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For no man can write anything who does not think that what he writes
is for the time the history of the world; or do anything well who does not
esteern his work to be of importance. My work may be of none, but I must
not think of it as none, or I shall not do it with impunity.

In like manner, there is throughout nature something mocking, some-
thing that leads us on and on, but arrives nowhere; keeps no faith with us.
All promise outruns the performance. We live in a system of approxima-
tions.

Ralph Waldo Emerson, Essay on Nature (1844).
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Preface

According to present ideas there is no vacuum in the ordinary sense of
tranquil nothingness. There is instead a fluctuating quantum vacuum. One
purpose of this book is to survey some of our most important ideas about the
quantum vacuum. A second is to describe, based on fundamental vacuum
processes, the physical concepts of quantum electrodynamics (QED).

Why bother? Few people doubt the reality or significance of vacuum
field fluctuations, and the formalism for perturbative QED calculations can
already be found in many books. My answer is that, if QED is indeed the
nonpareil physical theory, and if “the vacuum holds the key to a full under-
standing of the forces of nature,”! then it is worthwhile to look carefully
at the physical ideas underlying QED vacuum effects, including not only
such things as mass and charge renormalization, Lamb shifts and Casimir
effects, but even more “elementary” things such as spontaneous emission,
van der Waals forces, and the fundamental linewidth of a laser. Phenom-
ena of the latter type, primarily nonrelativistic, are basic to quantum optics
and other aspects of modern, applied QED. All of them involve the vacuum
electromagnetic field in one way or another. All of them, furthermore, can
be described physically in ways that involve source fields. A third purpose
of this book is to exhibit and explain the relation between vacuum and
source fields.

The modern view of the vacuum is closely related to zero-point energy,
the energy associated with motion persisting even at the absolute zero of
temperature, where classically all motion ceases. The idea of zero-point
energy arose with the work of Planck and Einstein on the blackbody prob-
lem, and is connected to early, vague premonitions of wave—particle duality.
Many physicists, including Pauli and Kramers, have been uncomfortable
with zero-point energy, and even today the concept retains a peculiar fla-
vor. We review the origins of the concept of zero-point energy in the first
chapter.

1p, C. W. Davies, Superforce (Simon and Schuster, New York, 1985), p. 104.
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xiv Preface

Chapters 2-8 are devoted to various aspects of the electromagnetic vac-
wum in nonrelativistic theory. In Chapter 2 we review the quantization
of the electromagnetic field in the simplest way, by exploiting the mathe-
matical equivalence of the field to a collection of harmonic oscillators. (A
more sophisticated path is taken in Chapter 10.) The zero-point field en-
ergy associated with the source-free, vacuum field is a consequence of the
zero-point energy of the simple harmonic oscillator. This zero-point en-
ergy is often ignored on the grounds that it is a constant addition to the
field Hamiltonian and can therefore be eliminated by simply redefining the
zero of energy. However, deletion of the zero-point field energy from the
Hamiltonian does not eliminate it once and for all from consideration, for
it “re-emerges” as the homogeneous solution of the operator Maxwell equa-
tions in the Heisenberg picture. In fact the vacuum field, with its zero-point
energy, is required for the formal consistency of QED, and in particular to
preserve canonical commutation relations.

In Chapter 2 we also introduce the Casimir force between two perfectly
conducting plates in the standard way, by considering the change in the
electromagnetic zero-point energy due to the presence of the plates. The
Casimir effect was proposed at the same time (1948) that the Lamb shift
and the anomalous magnetic moment of the electron were being interpreted
in terms of zero-point field energy and fluctuations by Welton and others.
I often wondered whether Casimir was at all influenced by these other
developments, and in early 1992 I wrote to him with this question. Dr.
Casimir has kindly given me permission to quote from his answer:?

No, I was not at all familiar with the work of Welton and others.
I went my own, somewhat clumsy way ...

A point I should have mentioned in later publications: Summer
or autumn 1947 (but I am not absolutely certain that it was not
somewhat earlier or later) I mentioned my results to Niels Bohr,
during a walk. That is nice, he said, that is something new. I told him
that I was puzzled by the extremely simple form of the expressions
for the interaction at very large distances and he mumbled something
about zero-point energy. That was all, but it put me on a new track

I found that calculating changes of zero-point energy really leads
to the same results as the calculations of Polder and myself ...

I do not think there were outside influences apart from those
mentioned above. I did not myself contribute to further develop-
ments, nor to experimental confirmations (apart from proposing a
crazy model for an electron, which did not lead to a value of the fine
structure constant).

24, B. G. Casimir, private communication, 13 March 1992,

Preface xv

In Chapter 3 we discuss various “vacuum fluctuation effects” — spon-
taneous emission, the (nonrelativistic) Lamb shift and anomalous moment,
the Casimir and Casimir-Polder forces, and the van der Waals interac-
tion — in elementary terms. These effects can be described and derived in
different ways in terms of source fields. Different interpretations and deriva-
tions result from an arbitrary choice of ordering of photon annihilation and
creation operators, as discussed in Chapter 4. In Chapter 5 we briefly re-
view the nonrelativistic theory of radiation reaction, which underlies the
source-field interpretation of “vacuum fluctuation effects.”

Chapter 6 shows how the vacuum field appears in various problems of
quantum optics, cavity QED, and laser physics, including the fundamental
quantum limit to the laser linewidth.

The Casimir effect plays such a prominent role in discussions of the
quantum vacuum that we devote Chapters 7 and 8 to a rather detailed
treatment of the forces between both conducting and dielectric bodies. We
derive the Lifshitz expression for the force between two dielectric slabs from
the perspectives of both vacuum and source fields, and show how various
approaches are related. The macroscopic approach pioneered by Lifshitz
is justified using the Ewald-Oseen extinction theorem. We discuss the
experimental status of Casimir effects and some theoretical elaborations.
We also describe Casimir’s “crazy model for an electron.”

Chapters 9 and 10 review some elementary features of the first-quantized
Dirac equation and quantum field theory, respectively, including the rela-
tion between causality and spin statistics and the propagators for various
quantum fields. We emphasize that all qguantum fields have zero-point ener-
gies and vacuum fluctuations. In particular, the Dirac vacuum of electrons
and positrons has a negative (infinite) zero-point energy, and this gives rise
to Casimir effects analogous to those for the pure electromagnetic field.

Chapter 11 is an old-fashioned approach to relativistic self-energies and
mass and charge renormalization. Some of the most important physical
ideas of QED, including vacuum polarization, emerge rather clearly in such
an approach. The modern approach, of course, is based principally on
covariant perturbation theory and Feynman diagrams. In Chapter 12 we
discuss the construction and utility of the diagrams, and again the calcu-
lation of basic things such as the electron self-energy, using both quantum
field theory and the intuitive way of Feynman. The identification of some
of the main physical ideas of relativistic QED in Chapter 11, before the
introduction of Feynman diagrams, seems to me to have the advantage of
avoiding confusion between the diagrams and the physics, although the dis-
tinction between the two is admittedly not easy to make when perturbative
calculations are taken to high orders. Chapters 9, 10, and 12 provide a



xvi Preface

painless short course, I think, for those crossing the relativistic Rubicon for
the first or second time.

Originally 1 hoped to cover more ground, including chapters on the
vacuum in quantum chromodynamics and cosmology. However, I gradually
realized that in a book of the intended size I could not do this without
sacrificing the rather considerable detail I wanted for various QED effects,
particularly van der Waals and Casimir interactions. Since these things are
not treated in any sort of detail in other books I know of, I decided to omit
the somewhat more speculative aspects of vacuum theory and to focus on
quantum electrodynamics.

Writing this book has given me much pleasure. 1 wish to thank espe-
cially Mei-Li Shih and Gordon W. F. Drake. Mei-Li not only was relentless
in her encouragement but also checked many of the calculations and made
good suggestions. In my opinion, but not hers, she is an author of this
book. Professor Drake served as a reviewer for Academic Press and, by
suggesting changes and identifying errors and non sequiturs, helped greatly
to improve the quality of the manuscript.

Discussions relating to this book with Richard J. Cook, Joseph H.
Eberly, Walter T. Grandy, Jr., Michael Lieber, David Nesbitt, M.D., Edwin
A. Power, David H. Sharp, and Larry Spruch were enlightening and often
encouraging. Professor Eberly supervised the Ph.D thesis work from which
this book gradually evolved.

I think it is also appropriate to thank Gabriel Barton, Timothy H.
Boyer, Trevor W. Marshall, and again, Edwin Power; their work has been
partly responsible for my continued fascination with the subject.

Needless to say, H. B. G. Casimir has given us a lot to think about, and
I thank him for his kind replies to my letters and for permission to quote
from them.

Finally I wish to acknowledge the inestimable help I have received from
the editors at Academic Press. I hope this book lives up to their high stan-
dards and expectations.

Peter W. Milonni
Los Alamos, New Mexico

Chapter 1

Zero-Point Energy in
Early Quantum Theory

The existence of a zero-point energy of size %hu [is] probable.
— Albert Einstein and Otto Stern (1913)

1.1 Introduction

The importance of the blackbody problem in the development of quantum
theory is recognized by every serious student of modern physics. What is
not so widely known is that blackbody theory led also to the concept of
zero-point energy, which was later to appear naturally in the mathematics
of quantum theory. The relation of this energy to early premonitions of
wave-particle dualism is similarly not widely appreciated. This chapter is
a discussion of these roots of the concept of zero-point energy. We do not
proffer any sort of rigorous historical analysis, but only a glimpse into some
of the early physics of energy at the absolute zero of temperature.

1.2 The Blackbody Problem

In 1860 Kirchhoff derived a general relation between the radiative and ab-
sorptive strengths of a body held at a fixed temperature T. According to
Kirchhoff’s law the ratio of the radiative strength to the absorption coeffi-
cient for radiation of wavelength ) is the same for all bodies at temperature
T, and defines a universal function F((A,T). This led to the abstraction of
an ideal blackbody for which the absorption coefficient is unity at evefy
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wavelength, corresponding to total absorption. Thus F(A,T) characterizes
the radiative strength at wavelength X of a blackbody at temperature T.
The problem was to determine the universal function F(\T).

An important step was taken in 1884 by Boltzmann, who invoked several
aspects of Maxwell’s electromagnetic theory. The most important of these
for the present discussion is the result that isotropic radiation exerts on a
perfectly reflecting surface a pressure u/3, where u is the energy density
of the radiation.! Boltzmann considered blackbody radiation confined in a
cylinder of volume V, one end of which is a perfectly reflecting piston. The
radiation pressure on the piston increases the volume by dV, and in order
to maintain a constant temperature an amount of heat

dQ = dU + PdV = d(uV) + %udV =Vdu+ %udV (1.1
must be added, according to the first law 6f thermodynamics. Kirchhoff’s

law implies that the total energy density u over all wavelengths is a function
only of T, so that

du 4
dQ = VﬁdT-i— EudV (1.2)
Associated with the expansion of the cylinder is an increase in entropy by
1 V du 4u
ds = TdQ = -j;ﬁdT+ §§3dV, (1.3)

which, according to the second law of thermodynamics, is an exact differ-
ential. Thus

05 Vdu 85 4u (1.4)
aT ~— T dT’ 8V~ 3T )
and 9*s 028 d d
ldu 4 u
—— T ———— T e T — e | — 1.
5757 = gver = T = 577 (T): (15)
from which it follows that du/dT = 4u/T and
u=bT* (Stefan—Boltzmann law), (1.6)

where b is a universal constant. Stefan in 1879 had in fact suggested such
a relation from an analysis of experimental data.

1A plane wave exerts a pressure 2u on a reflecting surface on which it is normally
incident. (See, for instance, W. K. H. Panofsky and M. Phillips, Classical Electricity
and Magnetism (Addison-Wesley, Reading, Mass., 1962), p. 193.) For plane waves
propagating with equal intensities in both directions normal to the surface, this is reduced
to u, or 4/3 if the radiation is isotropic.

The Blackbody Problem 3

The Stefan-Boltzmann law stands in conflict with elementary classical
models of equilibrium between radiation and matter. Consider the classical
oscillator model of an atom, where an electron is assumed to be bound by
an elastic restoring force. If p(v)dv denotes the energy per unit volume of
radiation in the frequency interval [v, v + dv}, then the rate at which the
atom absorbs energy from the radiation field may be shown to be given by
the formula (see Appendix A)

2
: me
Wa = 3—n-l'P(Va), (1.7)

where Wy is the electron energy, e and m are its charge and mass, re-
spectively, and v, is the natural oscillation frequency of the electron in the
atom. The rate at which the electron radiates electromagnetic energy Wem
is given by the well-known classical Larmor formula:

: 2¢%a?
Wem = ——-, (1.8)

where a is the acceleration of the electron. For oscillation at frequency
Vo = wo/27, a = —w?z and

(1.9)

where z is the electron displacement from its equilibrium position in the
classical oscillator model of the atom. Now according to the virial theorem
of classical mechanics the average potential energy mw?z? of the (one—
dimensional) electron oscillator is equal to the average kinetic energy, and
their sum is the total oscillator energy U. In a state of equilibrium between
radiation and matter, furthermore, the energy absorption rate (1.7) should
equal the emission rate (1.9). Thus

, 4,24
Wen = (3_2”__"_) 2,

3c3

T 0% 8rv?
p(v,) = (mw?z?) = ::o U, (1.10)
or more generally
8mv?
pv) = —73-U (1.11)

for a blackbody, which absorbs at all frequencies v. Finally the equipartition
theorem of classical statistical mechanics demands that the average value
of U in thermal equilibrium is kT, where k is Boltzmann’s constant, so that
the spectral energy density of thermal radiation must be

8 2
p(v) = ( :: )kT (Rayleigh—Jeans distribution). (1.12)
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The total electromagnetic energy density

u= /000 p(v)dv (1.13)

violates the Stefan-Boltzmann law. Furthermore the Rayleigh-Jeans law
suffers from the ultraviolet catastrophe: u diverges when (1.12) is used for
p(v).

Equation (1.11) was derived by Planck and, as we shall see, played a
very important role in his work on the blackbody problem.

Equation (1.12) for the spectral energy density of blackbody radiation
was first deduced in a less explicit form by Rayleigh in 1900.2 Although
the derivation just outlined might be criticized for its reliance on a partic-
ular model of an atomic electron, it is easy to derive the Rayleigh-Jeans
distribution on more general classical grounds. An electromagnetic field
mode of frequency v is basically just a linear harmonic oscillator (see Chap-
ter 2) that, according to the classical equipartition theorem, has an aver-
age energy kT at thermal equilibrium. Since the number of modes per
unit volume in the frequency interval [v,v + dv] is (8w?/¢%)dv, the elec-
tromagnetic energy per unit volume in this frequency interval should be
(872 /c3)(kT)dv = p(v)dv, which is the Rayleigh-Jeans law, independent
of any particular model for the atoms with which the radiation is in thermal
equilibrium. From this perspective the failure of glassical theory, according
to Kelvin and Rayleigh, must lie in its equipartition theorem.

Another classical result, due to Wien in 1893, must be mentioned. Wien
basically followed Boltzmann’s model of radiation contained in a cylinder
with a piston, but included the Doppler shift of radiation reflected by the
moving piston. This allowed radiant energy to be exchanged among differ-
ent frequencies. Wien showed that the spectral energy density must follow
the general form

p(v) = v*¢1(v/T)  (Wien displacement law), (1.14)

or, in terms of wavelength,

= A"5¢,(AT) (Wien displacement law), (1.15)

p(A) = p(v) %

where ¢; and ¢; are undetermined functions. The Rayleigh-Jeans distri-
bution obviously obeys Wien’s “displacement law” (1.14).

2Motivated by Wien’s work, Rayleigh also allowed for the possiblility that a factor
e—(const)¥/T ghould be included, thus avoiding the ultraviolet catastrophe.

Planck’s First Theory 5

A few years later Wien presented arguments in support of the distribu-
tion
p(A) = ar~%¢=P/*T  (Wien distribution), (1.16)

where a and B are constants. A similar distribution function, with the
factor A% replaced by A~7, had just been proposed by Paschen as a fit
to his experimental data. Paschen’s data indicated that y was between
5 and 6, thus providing some support for the displacement law. Further
measurements showed that 4 was indeed close to 5.

Wien’s arguments for (1.16) seem to have been guided more by the
desired result than by physics. To wit, he made the peculiar assumption
that the wavelength and intensity of the radiation from a given atom (or
molecule) are determined only by that atom’s velocity. This allowed him
to adduce the exponential term in (1.16) from the factor exp(—mv?/2kT)
in the Maxwell-Boltzmann velocity distribution function. In any case the
Wie]? distribution was soon to find a more secure provenance in Planck’s
work.

1.3 Planck’s First Theory

Given that Planck was an expert in thermodynamics, it is not surpris-

‘ing that his work on the blackbody problem emphasized the concept of

entropy. In a series of papers in the late 1890s, Planck produced a deriva-
tion of the Wien distribution from general thermodynamical considerations
plus the assumption that the entropy of a collection of radiators depends
only on their total energy. An important result was the following relation
between the entropy S and average energy U of an elementary radiator
(or “molecule” for our purposes) in thermal equilibrium with radiation at
temperature T :

s A

=T (1.17)
where for a given radiator A is a constant. From this equation and the
general relation 8S/0U = 1/T it follows that

U = Be™ VAT, (1.18)
where B is another constant that, like A, may depend on the frequency

of a given radiator. This result, together with (1.11), yields the radiation
spectral energy density

p(v) = f(v)e VAT, (1.19)
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where f(v) is some function of v. Wien’s displacement law implies that
f(v) and A are proportional to v3 and v~!, respectively, so that

p(v) = Civ3e~P¥I/T (C,D constants) (1.20)

or
p(A) = ar~8e"PI*T  (a,p constants), (1.21)

which is the Wien distribution.

The Wien distribution, however, was soon found to be incorrect as ex-
perimentalists extended their spectral measurements to higher wavelengths.
This was accomplished by the “residual rays” method, whereby longer wave-
lengths were isolated by multiple reflections off an appropriate crystal. In
February 1900 Lummer and Pringsheim reported data that deviated from
the Wien distribution by 40-50% for wavelengths between 12 and 18 pm,
and in October similar conclusions were reported by Rubens and Kurlbaum.

It was the work of his friend Rubens that led Planck to his formula for
the spectral energy density of thermal radiation. In particular, the data
indicated that p(v) was proportional to the temperature T for small v and
large T. Planck found a formula with that behavior at small v and which
approximated the Wien distribution for large v.

In a paper delivered at a meeting on 19 October Planck presented his
formula and provided some justification for it.3 For small v and large T,
the experimental result p(v) o< T and equation (1.11) imply U o< T and
therefore, since 8S/U = T~1,82S/0U* o< U~% and S o logU. On the
other hand (1.17) leads to the Wien distribution, which has the correct
form for large v and small T'. Planck proposed the interpolation

a*s -A

57 = T+ 0) (A, B constants). (1.22)

According to Planck, equation (1.22) “is the simplest by far of all the
expressions which yield S as a logarithmic function of U (a condition which
probability theory suggests) and which besides coincides with the Wien law
for small values of U.” Using again the relation S/0U = 1 /T, equation
(1.11), and the Wien displacement law, one obtains from (1.22) the spectral
energy density

ai~s

p(}) = SRT 1 (a, B constants). (1.23)

This formula was found to agree with all the existing data. In order to give
it “a real physical meaning,” Planck began what he later described as “a

3See the books by Kuhn and Pais and the articles by Klein cited at the end of the
chapter.

Planck’s First Theory 7

few weeks of the most strenuous work of my life.” The culmination of that
work was the birth of quantum theory.

Planck’s reasoning may be glibly summarized as follows. Consider N
radiators of frequency v and total energy Uy = NU = Pe, where P
is a large integer and ¢ is some finite element of energy. The entropy
Sy = NS = klogWy, where Wx is the number of ways in which the P
energy elements can be distributed among the N radiators. f N = P =2
for instance, then the different partitions of the energy between the twc;
radiators are (2¢,0), (¢, ¢€), and (0, 2¢) if the energy elements are assumed
to be indistinguishable. Under this assumption we have, in general,

_(N—1+P)!

v = "piv - (1.24)

‘which is'th'e number of ways in which P indistinguishable balls can be put
into N distinguishable boxes. Stirling’s approximation (log M! = M log M —
M for large M) then gives, for N, P >> 1,

k (N-1+P)!

S = —log—m—mmo0ou__ 2
N 6PN -1

P P P P
= k|(14+=)log(l+—=)—— il
[a+ 2ytog1+ 1) - F1os 7|
U U U U
= k — i W il
[(1+ e)log(1+ €) - log e]' (1.25)
Thus as
1 k €
WoT "< log(1+ 77) (1.26)
or
€
U=~ (1.27)

for the average energy of each radiator. The excellent agreement between
(1.23) and experiment, together with equation (1.11), suggests that € is
inversely proportional to the wavelength, or directly proportional to the
frequency of the oscillator:

€= hv. (1.28)
Then
hv
U= (1.29)
and (1.11) implies
8rhi3/c3

p(v) = T ] (Planck spectrum) (1.30)
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for the spectral energy density of thermal radiation.

The expression (1.25) for S satisfies equation (1.22) with A = k and
B = ¢. Once (1.25) is obtained, therefore, one is led to the form (1.23)
for the spectral energy density. The great success of (1.23) in fitting the
experimental data led Planck to what he later called an “act of desperation”
needed to derive (1.25).

One aspect of this desperate act is the way Planck counted the num-
ber of ways, or “complexions,” in which P energy elements could be dis-
tributed among N radiators. His counting procedure was totally at odds
with classical statistical methods in its treatment of the energy elements as
fundamentally indistinguishable. In one sense Planck was following Boltz-
mann in regarding all complexions as equally likely, but of course his way
of counting the number of complexions was radically different. His “energy
elements” obeyed what would much later be recognized as Bose-Einstein
statistics.

Another revolutionary (nonclassical) aspect of Planck’s calculation, of
course, is the physical significance it attaches to the “energy elements” of
size €, and the relation (1.28) between ¢ and the frequency v of a material
oscillator. Boltzmann had also employed “energy elements” in his counting
of complexions, but in his calculations € had no particular significance and
in fact could ultimately be taken to be zero once a formula for Wy had been
obtained. If Planck had taken the limit ¢ — 0 in equation (1.26), however,
then 9S/9U — k/U and 92S/U? — —k/U?, which leads to the Rayleigh-
Jeans distribution. In Planck’s derivation of his spectrum, therefore, the
quantization of energy was absolutely essential.

This is the traditional view of Planck’s innovation. It should be noted,
however, that Kuhn (1978) has concluded that Planck did not in 1900 intro-
duce any physical quantization of either radiation or material radiators. He
argues that Planck’s radiators were simply “a device for bringing radiation
to equilibrium, and it was justified, not by knowledge of the physical pro-
cesses involved, but by Kirchhoff’s law, which made the equilibrium field
independent of the equilibrium-producing material.”

Until about 1905 Planck’s formula was regarded as little more than
a superb fit to the experimental data. Its true significance began to be
appreciated only when it was realized that the Rayleigh-Jeans law was an
inevitable consequence of classical physics and the equipartition theorem,
and therefore that the blackbody experiments had uncovered a fundamental
failure of known (classical) theory.

A curious circumstance relating to zero-point energy, which was noted
by Einstein and Stern (1913), is worth mentioning. Consider the classi-
cal limit kT >> hv of the expression (1.29) for the average energy of an
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oscillator in thermal equilibrium with radiation:

hv hv kT 1
U= o = > kT — =hv.
w1 TRy eig e (8

Thus U contains a first-order temperature-independent correction to kT,
the energy predicted by the equipartition theorem in the classical limit.

But 1 5
v 1

which includes the zero-point energy %hl/, does not have a first-order cor-

rection to kT in the classical limit. In Planck’s “second theory” U was in
fact replaced by U + %hu.

1.4 Planck’s Zero-Point Energy

It was mentioned earlier that it took several years for the profound sig-
nificance of Planck’s distribution to be appreciated. Planck himself was
unsatisfied with the largely ad hoc theory he had used to derive his spec-
trum, and for many years he explored alternative hypotheses that might
lead to it.

In 1912 Planck published his “second theory.” The absorption of radia-

tion was assumed to proceed according to classical theory, whereas emission

of radiation occurred discontinuously in discrete quanta of energy. Assume
that an oscillator can radiate only after it has (continuously) absorbed an
energy hv. Let P, be the probability that it has energy between (n — 1)hv
and nhv. When, as a result of absorption of radiation, its energy reaches
nhu, there is a probability p that it will lose all its energy in the form of
radiation, and a probability 1 —p that it continues to absorb without emis-
sion of radiation. Thus P, = Pi(1 —p), Ps = P2(1 — p) = A(1 - p)?, ..,
P,=P(1-p)"~!, and

S Po=1=) P(l-p)"'=P/p (1.33)
n=1 n=1

or P = p is the probability that an oscillator in equilibrium with radiation
has energy between 0 and hv, P, = p(1 — p) is the probability that it has
energy between hv and 2hv, and P, = p(1 — p)*~! is the probability that
it has energy between (n — 1)hv and nhv. Following Boltzmann, Planck
defines the oscillator entropy as

S = —kY PalogP,=-kY_ p(1-p)" " loglp(1-p)*""]
n=1 n=1
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= —k [% logp + (% —1) log(% - 1)] . (1.34)

Planck now assumes that all energies between (n — 1)hv and nhv are
equally likely, so that the average energy of the oscillators with energy
between (n — 1)hv and nhv is 3(n +n —1)hv = (n — 1)hv. The average
oscillator energy is then

U= i(n - %)huP,. = hui(" - %)p(l -p)" = (% B %)h" (1.35)
rpurt n=1

or 1/p = U/hv + % . From (1.34), therefore,

v 1 U 1 v 1 U 1 ]
=k |(-= + 2)log(—— + =) — (— — =) log(— - )| - 1.36
s= k[ + Pl +3) - (G~ Ples(y — )] (139
Using once again the relation 8S/0U = 1/T, Planck obtained
1, eM/*T 41 hv 1
== = =hv. 37
U=shvmomr—1 = it —1 + ghv (1.37)

This implies that U # 0 when T — 0: when T' — 0,U — %hu. Planck’s
equation (1.37) marked the birth of the concept of zero-point energy.

To derive p(v) Planck could not resort to equation (1.11), since the

derivation of that equation assumed continuous absorptiomand emission
processes. Instead he made the assumption that the ratio of the probability
that an oscillator does not emit radiation, to the probability that it does,
is proportional to p(v): (1 — p)/p = Cp(v), or 1/p = Cp(v) + 1, where
C is a constant of proportionality. This assumption is plausible in that,
the greater the radiation intensity, the more absorption should dominate
emission. (Planck, of course, was not at this time aware of the possibility
of stimulated emission!) Then, from (1.35), U = [Cp(v) + i]hv or

1 1

W)= G 1 (1.38)

To determine C Planck appeals to the classical limit, where the Rayleigh—
Jeans law should apply: for kT >> hv, p(v) should reduce to (1.12), which
requires that 1/C = 87hv3/c® and therefore that

8whi3/c?

It is interesting that, in deducing C in this way, Planck was employing what
would soon come to be called the correspondence principle. Furthermore
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Planck’s probability p might well be regarded as the first example of a
quantum transition probability.

It is also noteworthy that in Planck’s second theory the material oscilla-
tors have zero-point energy but the electromagnetic field does not: p(v) — 0
for T — 0. Had Planck simply used equation (1.11) to relate p(v) and U,
he would have obtained from (1.37) the spectral energy density

8whi3/c3

p’(V) = p(l/) + 47rhV3/03 = W__l

+ 4rhi? /3, (1.40)
which, as we will see later, turns out to be the correct spectrum from the
standpoint of modern quantum electrodynamics. The zero-point energy
appearing in Planck’s expression (1.37) is also perfectly correct according
to modern theory, even though Planck’s route to it is not.

By 1914 Planck was convinced that zero-point energy would be of no
experimental consequence. However, the concept attracted much attention,
and soon came to play a major role in the work of Einstein.

1.5 The Einstein—Hopf Model

“Concerning a Heuristic Point of View Toward the Emission and Trans-
formation of Light,” Einstein (1905) deduced that radiation satisfying the
Wien distribution “behaves thermodynamically as though it consisted of a
number of independent energy quanta of magnitude [hv].” Based on this
viewpoint he predicted the linear relation between radiation frequency and
stopping potential in the photoelectric effect, a prediction confirmed by
Millikan’s experiments in 1916. In 1906 he argued that “in emission and
absorption the energy of a [Planck oscillator] changes by jumps which are
integral multiples of hv.” These were the beginnings of the photon concept.
Einstein struggled with the blackbody problem for more than ten years
after he introduced his heuristic viewpoint concerning energy quanta of
radiation. In one important paper Einstein and Hopf (1910b) studied a
simple model for the thermal equilibrium between oscillating dipoles and
electromagnetic radiation. Imagine each dipole to consist of a particle of
mass m and charge e, bound by an elastic restoring force to a mass M (>>
m) of opposite charge. The equation of motion for a linear dipole oscillator
is then (see Appendix A)
2
%t-;+wfz— i = %E,(t), (1.41)
where w,(= 27v,) is the natural oscillation frequency, E;(t) is the z-
component of the external electric field acting on the particle, 7 2 is the
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radiation reaction term, and T = 2e2/3mc3. The two oppositely charged
particles define an electric dipole moment ez(t). Implicit in equation (1.41)
is the electric dipole approximation of neglecting any spatial variation of
E,(t) over the distance separating the particles. It is also assumed that the
interaction of the dipole with the magnetic field is negligible.

Equation (1.41) is essentially the same equation used earlier by Planck to
derive equation (1.11) (Appendix A). In the Einstein—Hopf model, however,
the dipole oscillators of mass M + m = M are allowed to move; for
simplicity they are constrained to move only along the z axis. Einstein
and Hopf showed that there is a retarding force on a moving dipole as a
result of its interaction with the field. This force acts to decrease its kinetic
energy. Due to recoil associated with emission and absorption, however,
the field also acts to increase the kinetic energy of a dipole. The condition
for equilibrium is that the increase in kinetic energy due to recoil balances
the decrease in kinetic energy associated with the retarding force.

Assuming v/c << 1, Einstein and Hopf showed that the retarding force
due to motion through a thermal field of spectral energy density plw,o) is

F = —Rbv, (1.42)

where AnZe? J
_2mre _ Yo 4P
R= 5mc? [p(wo) 3 dwo] -~ (143)

and v is the velocity of the dipole. Essentially this same result is derived
in Appendix B.

Consider now a dipole with linear momentum Mu(t) at time ¢. After a
short time 6t its momentum is

Mou(t + 6t) = Mo(t) + A — Ru(t)ét, (1.44)

where A is the impulse imparted to the dipole in the time interval 8t as a
result of recoil associated with emission and absorption of radiation. Then

M2o3(t + 6t) — M?0%(t) = A2 — 2M R (t)6t + (2M — Rét)o(t)A (1.45)

when &t is taken to be small enough (or M large enough) that terms
quadratic in 8t are negligible. Now take the equilibrium ensemble aver-
age of both sides of (1.45):

2M(( M+ 61)) — (G MO(@)] = 0= (A7) - ARSU(Z MO (D). (1.46)

In writing this expression we have used the fact that (v(t)A) = 0, since
A is equally likely to be positive or negative in the time interval from t
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to t + 6t. In thermal equilibrium, furthermore, the equipartition theorem
requires the average kinetic energy to be (1 Mv%(t)) = $kT. The condition
for thermal equilibrium is therefore

(6t)"*(A?) = 2RkT. (1.47)

It remains to determine (AZ?).

The force on an electric dipole moment eZz(t) in the Einstein-Hopf
model, where the dipole points in the z direction and is free to move only
along z, may for our purposes be taken to be F, = e£z(t)0E,(t)/0z.* The
impulse imparted to the particle during the time interval from t = 0 to
t = &t is thus st 5 ()

E.(t
A= e/o dtz(t) Eral (1.48)
Einstein and Hopf write the electric field as a superposition of plane waves
with independent random phases 0} ,:

E(r,t) - "Z [Ak)‘e—i(w”-*-ok") _ Ai‘{)‘e‘(“”"”kx)]ek)‘, (149)
ka

where e, is a unit polarization vector for a plane wave with wave vector
k and linear polarization index A (= 1,2). The steady-state solution of
equation (1.41) is then

ie —f(w . i(w
2(t) = = [Fixe S SR A SY } (1.50)
k

where the origin of coordinates has been chosen to be at the position of
the dipole and F, = —Ap, ek, [wi — w? + irwi]~!, where ey, , is the z-
component of e}, . In aseparate paper Einstein and Hopf ( 1910a) show that
E,(t) and 8E, /dz must be treated as independent random variables in the
time integral (1.48). It then follows from (1.48)-(1.50) by straightforward
manipulations that (A) = 0 and

4ricir

7 ah = (557) o) (151)

o

where the ensemble average is taken over the random phases 6}, .

Equation (1.47), together with (1.43) and (1.51), now gives a differential
equation that must be satisfied by the spectral energy density of thermal
radiation:

wd 2
o) - 52 = (gmeg) ) (1.52)

4See P. W. Milonni and M.-L. Shih, Am. J. Phys. 59, 684 (1991).
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The solution of this equation satisfying p(0) = 0 is

wkT

which is seen to be just the Rayleigh-Jeans law when we recall that w = 27v
and p(w) = p(v)/2~.

The beautifully cogent arguments of Einstein and Hopf provide further
evidence that the Rayleigh-Jeans law is an inexorable consequence of classi-
cal physics. However, we shall see that their results are dramatically altered
when zero-point energy is postulated.

1.6 Einstein and Stern’s Zero-Point Energy

In 1913 Einstein and Stern noted that an ad hoc postulate about zero-point
energy in the Einstein—-Hopf model would lead to the Planck spectrum.
First let us note that equation (1.11) allows us to write (1.52) in a form in
which the average dipole energy U appears explicitly:
wdp 1

Now suppose the average oscillator energy U is replaced by U + hw. This
means that the dipole oscillators are now assumed to have a zero-point
energy hw. Equation (1.54) is then replaced by

wdp 1 hw
pW -375 = gEprUH T A
23 hw
= 3omr? @+ )
23, hw3
= ol Wt —55PW)l- (1.55)
The solution of this equation satisfying p(0) = 0 1s
hw3 fn2c3
pw) = Fol¥T —1 (Planck spectrum). (1.56)

In other words, if it is assumed that the dipole oscillators in the Einstein—
Hopf model have a zero-point energy hw, then the equilibrium spectrum of
radiation is found to be the Planck spectrum.

The oscillator zero-point energy postulated by Einstein and Stern is
twice that found earlier by Planck. Since we now know that Planck’s zero-
point energy %hw is the correct one, it is interesting to see how Einstein and
Stern arrived at the correct spectrum using the wrong zero-point energy.
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According to quantum theory a field mode of frequency w, like a material
oscillator, has a zero-point energy %hw (see Chapter 2). The total zero-
point energy of a linear dipole oscillator of frequency w and a field mode of
the same frequency is therefore %hw+%hw = hw. Einstein and Stern’s zero-
point energy hw is just this, but they attributed it solely to the material
dipole oscillators.

Suppose we include in the Einstein—-Hopf model a zero-point energy %hw
for a dipole oscillator and a zero-point energy %hw for each field mode. Since
there are (8712/c%)dv = (w?/n%c®)dw field modes per unit volume in the
frequency interval [w,w + dw), the spectral energy density of the zero-point
field is

2 1 hw3
po(w) = (w /7r2c3)§hw =23 (1.57)

If we replace p(w) in (1.54) by p(w) + po(w), the left side is unchanged:
w dp

[p(w) + pof)] — S [p(w) + pow)] = plw) = S5

If we ‘a.lso account for the zero-point energy of the dipole oscillators by
replacing U by U + LAw, the product p(w)U on the right side of (1.54) is
changed to

(1.58)

() + pol)llU + ghe] = p(w)U + 3hup(w)

1
+ po(W)U + ihw/’o(w)

w

= TELA0) + o)) + sz o] + Hiopo)

w

1I'263 3
= o) + amgp@)] + ghwpe(@), (1.59)

where we have used (1.57) and (1.11) in the form U = (7%¢3/w?)p(w).

The term hwpo(w) in (1.59) results from a coupling of the zero-point
motion of a dipole oscillator to the zero-point oscillations of the field. In
quantum theory, in effect, no such coupling arises: an oscillator in its ground
state in the absence of any applied field remains in its ground state. We
shall see later how this comes about, but for now let us just accept it and
drop the term 3Awp,(w) in (1.59):

1 723 hw3
[p(w) + po(W)IU + 5hw] = —[p*(w) + —5P(w)]- (1.60)
From (1.54), (1.58), and (1.60), then, we have
wdp w33 hw?

pw) = 370 = 3oappll W) + 3 5PW)), (1.61)
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which is exactly the Einstein-Stern equation (1.55). The complete spec-
trum p(w) + po(w) is then given by equation (1.40).

This route to the Planck spectrum may be summarized as follows. We
modified the Einstein-Hopf model to include a zero-point energy 1hw for a
dipole oscillator and a zero-point energy %hw for each mode of the electro-
magnetic field, and anticipated a result of quantum theory that there is no
contribution from the coupling of the zero-point oscillations of the dipole
and the field. This led to the Einstein-Stern equation (1.55). Einstein and
Stern, however, did not invoke any zero-point energy of the field, and to
arrive at the Planck spectrum their dipole oscillators had to have a zero-
point energy %hw plus what we now know to be the zero-point energy of a
field mode of the same frequency.

Why did Einstein and Stern not assume zero-point energy for the field?
After all, one might have thought that the relation (1.11) between p(w) and
U would have made it obvious that, if either the dipole oscillator or the
field has a zero-point energy, then so must the other. If Planck’s zero-point
energy %hw is added to U in (1.11), for instance, then for consistency we
must add the spectral energy density po(w) of the zero-point field to p(w) :

wZ
o) + polt2) = a5 (U + ), (1.62)

or again po(w) = hw?®/272c3, which in turn implies that each field mode
has a zero-point energy -;-hw‘

However, such a “consistency” argument rests on the usual acuity of
hindsight. The fact is that at various stages in Einstein’s long efforts to
understand the Planck spectrum he seriously doubted the general validity
of Planck’s equation (1.11). This is not surprising, for if Planck had simply
invoked equipartition of energy and used U = kT in (1.11), he would have
obtained the Rayleigh-Jeans spectrum. It is not clear whether Planck was
even aware at the time of the classical equipartition theorem. If he had
known and believed the equipartition theorem, as Einstein later remarked,
“he would probably not have made his great discovery.”®

There is another reason why Einstein and Stern might have been unwill-
ing to attribute a zero-point energy to the field: if p(w) and U are replaced
by p(w) + po(w) and U + %hw, respectively, in the Einstein—-Hopf model,
then one obtains the Rayleigh-Jeans spectrum for the total spectral density
p(w) + po(w). Crucial to the derivation of the Planck spectrum is the omis-
sion of the term 3hwp,(w) in (1.59). This omission occurs automatically in
the quantum theory of the Einstein-Hopf model, as we shall see in the next

5 Albert Einstein: Philosopher-Scientist, ed. P. A. Schilpp (Tudor, New York, 1949),
p. 43.

-~
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chapter. Without this consequence of quantum theory available to them,
Einstein and Stern may have simply discounted the possibility of zero-point
electromagnetic energy. Indeed, the first suggestion that there might be a
zero-point electromagnetic field is due not to Planck or Einstein and Stern
but to Nernst (1916). ,

1.7 Einstein’s Fluctuation Formula

Prior to his work with Hopf and Stern, Einstein (1909) had derived a for-
mula for the energy fluctuations of thermal radiation. Denoting the vari-
ance in energy in the volume V and in the frequency interval [w,w + dw]
by (AE2), we may write the Einstein fluctuation formula as

(AE2) = [hwp(w) + %ipz(w)]de. (1.63)

The importance of this formula lies in Einstein’s interpretation of it. The
first term in brackets, according to Einstein, may be obtained “if radiation
were to consist of independently moving pointlike quanta of energy hv” :

(AEZ) particles = hwp(w)V dw, (1.64)

wh.ereas the second term follows when the field is treated as a superposition
of independently fluctuating waves:

2 n2cd ,
(AEw)waves = _w'z—P (W)de (165)

Thu§ (AE?2) has both wave and particle contributions. The Einstein fluc-
tuation formula was the earliest indicator of the wave-particle dualism in
quantum theory.

The “wave” term (1.65) may be derived from the superposition (1.49)
of waves with independent random phases. For instance,

(E2(r,t)) = —=2Re Z Z [Akl)\lAkzhe_"(w"l+‘”*2)te‘(k‘+k’)'r
kix kaas
X (6—’(9klh+ok2*:)) — Ak A

* — (Wi, ~wiy)t
lAkQAge :

. —1(6 -
% e:(kl—k:).r(e ( k;», oknz))]eklz\n “€kay (1.66)

Where again the average is over the phases ) ,, which are assumed to be
independent, uniformly distributed random variables on the interval [0, 27].
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Thus
E (e, 1) =23 | Al I (1.67)
kx
and similarly
(Et(r, 1)) =80 | Akn 1)) (1.68)
kx
so that
(B4 (r, 1)) — (B2(r, 1)) =43 | A, [*)* = (E*(r, 1)) (1.69)
kx

Since the electromagnetic energy density is proporti(?nal to (E?), it ijollows
from (1.69) that the variance in energy associated with frequ'enc.y w is pro-
portional to p?(w). We omit the trivial details of the derivation, which
leads directly to equation (1.65). ‘ .

The “particle” term (1.64) in the Einstein fluctuation formula is of far
less obvious origin, and to derive it we temporarily assume the field energy
can be written as

E =) ny,hw, (1.70)
ka
so that its variance is -
(AE?) = Z(Ankx)zn%k?, (1.71)
kx

where the nj, are integers. Thus we are assuming that the field energy
is comprised of discrete quanta of energy hwk,‘and that the numbers of
quanta associated with different modes fluctuate independently. We assume
Poisson statistics for these quanta, so that

(And) = (nk,) (1.72)
and
(AE?) =Y (me, ) we™. (1.73)
kx

Since p(w) is proportional to the average number of photor}s at frec.luenc.y
w, equation (1.73) leads easily to the particle term (1.64) in the Einstein
fluctuation formula. .

The Einstein fluctuation formula is derived more thoroughly in t}}e next
chapter. For the present discussion we simply note that we can obtain both
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the “wave” and “particle” terms using the classical wave picture with zero-
point energy. That is, if we replace p(w) in (1.65) by p(w) + po(w), where

the spectral energy density p,(w) of the zero-point field is given by (1.57),
we have

w23
(AEz)waves - 7’[/’2(“’) + 2po(w)p(w) + Pg(“’)]Vd“’

2.3 2.3
= [ (W) + hep()lVde + ——p2

2 Po(w)Vdw

w

7|'263
= (AEz,)waves + (AE‘z)particles + Fpg(w)de

1
= (AE2)waves + (AE2)particles + Ehwpo(w)de.
(1.74)

The “extra” (third) term in this expression does not appear in the Einstein
fluctuation formula. Indeed we shall see in the following chapter that it
does not appear at all in quantum theory, for the same reason that the
term %hwpo(w) in equation (1.59) is absent in quantum theory.

But aside from this spurious “extra” term, we have obtained the Einstein
fluctuation formula from a classical wave perspective that includes zero-
point field energy. Obviously the argument is essentially the same as in our
approach to the Einstein-Stern theory, and suggests that the particle term
in the Einstein fluctuation formula may be regarded as a consequence of
zero-point field energy.

The particle term was in fact the novel element in Einstein’s fluctu-
ation formula, and Einstein emphasized that this term was incompatible
with classical wave theory (without zero-point energy). If there were only
classical wave fluctuations in thermal radiation, we could ignore the term
proportional to p(w) in equation (1.61). The result is

wdp w23

— —— T c—— 2
P@) - 335 = 3o’ @)

and the solution is the Rayleigh-Jeans spectrum, p(w) = (w?/w%c3)kT.
Without the wave term, on the other hand, (1.61) becomes
wdp hw

W) = 330 = 557P@)
and the solution of this equation is p(w) = (hw3/72c3)e~"*/*T  the Wien
distribution. This is consistent with the fact that in 1905 Einstein had
deduced his “heuristic point of view” concerning radiation energy quanta
by considering only radiation satisfying the Wien distribution.

(1.75)

(1.76)
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1.8 Einstein’s A and B Coeflicients

Einstein wrote to his friend Besso in November 1916 that “A sp!enflid light
has dawned on me about the absorption and emission .of radiation.” He
was referring to his new insight into his “heuristic pri.ncu.)le” of 1905, and
the basis it provided for an “astonishingly simple” derivation of the Planck

spectrum. ‘ . '
For the sake of completeness we summarize the argument here. Einstemn

assumes that an atom (or molecule) has discrete energy levels. L‘et Ny a.nd
N, be the numbers of atoms in energy levels El fipd E5, respectively, W.lth
E, > E;. (For simplicity we ignore the possibility c‘>f level degeneracu.es,
which does not affect the result for the spectral density qf thermal ‘rac'ha—
tion.) The rate at which N; changes due to the absorptlon. of radiation,
with the atomn making an upward transition to the lf.:vel E,, is assumed to
be proportional to Ny and the spectral energy density p(w,) at the Bohr
transition frequency w, = (Ez — Ey)/h:

(Nl)absorption = _B12N1p(wo)- (177)

Einstein proposes two kinds of emission processes by .which an atom can
jump from level E; to E, with the emission of.' radiation of frequency Wo.
One is spontaneous emission, which can occur in the absence of any radia-
tion and is described by the rate constant A : -

(Nl )spontaneous emission = A1 Na. (1 '78)

The other is stimulated emission, which is assumed to proceed at a rate
proportional to both N, and p(w,) :

(Nl)stimulated emission = B21N2P(wo)- (179)
The condition for equilibrium is
(Nl)absorption + (Nl)spontaneous emission + (Nl )stimulated emission — 0 (180)

or
Ag1 Na + Bayi Nap(wo) = B2 N1p(w,), (1.81)

Az /B2 _ Az1/Ba 1.82
plwe) = (B12/B21)(N1/N2) — 1 T (Bi2/Ba1)etvwelFT — 1 ’ (1.82)

since Na/Ny = e~ (Ea=E1)/¥T — ¢=hwe/FT jn thermal equilibrium. We are
using Bohr’s postulate (1913) that E; — E, = hw, , b.ut it is worth noting
that this relation in fact emerged naturally from Einstein’s analysis once the
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assumption of discrete energy levels was made and the Wien displacement
law was invoked.

At very high temperatures p(w,) becomes so large that spontaneous
emission is much less probable than stimulated emission. Then from (1.81)
we must have By = Bjy and, from (1.82),

A2 /By

p(wo) = eﬁTo/k—,I—,_—l . (183)
For kT >> hw,, furthermore,
~ A2 kT
plw,) =2 By T (1.84)

This is the limit where the radiation energy quanta are so small compared
with kT that the classical Rayleigh-Jeans law should be applicable. This
requires (Az; /B2y )(kT/hw,) = (w2/m2c®)kT, or

Agl = hwg
le - w23 (185)

and equation (1.83) then yields the Planck spectrum for p(w).

This derivation of the Planck spectrum joined aspects of Einstein’s ear-
lier work on radiation quanta with the theories of Planck and Bohr. But
in it Einstein had made several profoundly important theoretical advances,
and he suggested that “The simplicity of the hypotheses makes it seem
probable ... that these will become the basis of the future theoretical de-
scription.” He was absolutely correct: none of the developments since 1917
has required any modification of Einstein’s derivation of the blackbody
spectrum.

One major consequence of Einstein’s work, of course, was the introduc-
tion of the concept of stimulated emission. Without the stimulated emission
term, (1.81) and (1.82) are replaced by

A1 N2 = B1aN1p(w,), (1.86)
_An Ny _ hwd _pupkr
Plwo) = 3= = 33° I¥T, (1.87)

Without stimulated emission, therefore, Einstein would have obtained the
Wien distribution.

Einstein’s work was also the first to reveal atomic radiation in the form
of spontaneous emission as a nonclassical process in which “God plays dice”:
there is nothing to tell us exactly when the atom will make a spontaneous
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jump to a state of lower energy. Einstein later wrote to Born that “That
business about causality causes me a lot of trouble ... Can the quantum
absorption and emission of light ever be understood in the sense of the
complete causality requirement, or would a statistical residue remain? ...
I would be very unhappy to renounce complete causality.” That displea-
sure prevented Einstein from ever accepting quantum theory as a complete
description of Nature.

Another novel aspect of Einstein’s work was that it brought out the fact
that photons carry linear momentum hv/c as well as energy hv .8 This part
of Einstein’s work of 1917 is not nearly as widely known as the derivation
of the Planck spectrum just reviewed. According to Einstein, however, “a
theory [of thermal radiation] can only be regarded as justified when it is able
to show that the impulses transmitted by the radiation field to matter lead
to motions that are in accordance with the theory of heat.” Einstein showed
that the momentum transfers accompanying emission and absorption are
consistent with statistical mechanics if the thermal radiation follows the
Planck distribution.

Consider the interaction with radiation of an atom initially at rest in
the laboratory frame of reference. After a time 6t it acquires some linear
momentum A due to emission and absorption of radiation. Each emission
or absorption process imparts to the atom a linear momentum A;, which
may be positive or negative. If n emission and absorption processes occur
during the time interval 6, then -

A= Zn: by (1.88)

i=1

and, assuming the ); to be independent random variables of zero mean,

(a%) = gu.?) ~3 (h‘;’°)2 n (1.89)

if we associate with each process of emission or absorption a momentum
transfer (photon momentum) fiw,/c. We have also included a factor of 1/3
because, as in the Einstein—Hopf model, the atoms are assumed to move
in only one direction. The average number n of emission and absorption
events occuring in the time interval 6t is given, according to the foregoing
analysis, by

n= NyAxnét + (N1 + Nz)Blgp(w,,)6t, (190)

6 The term photon for radiation quanta was coined in 1926 by Gilbert Lewis, a physical
chemist.
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so that
-1 1 hwo 2
(6)7(a?%) = 3 ( - ) [N3A21 + (N1 + N2)Bi2p(w,))
2 (hw, 2
= 'g p N1312p(wo), (191)

where we have used the equilibrium condition (1.81).

This result shows that an atom interacting with radiation will continu-
ally gain kinetic energy unless there is some retarding force to maintain the
fixed average kinetic energy (%mvz) = %kT demanded by statistical me-
chanics. The origin of this retarding force is the same as in the Einstein—
Hopf model, except that now we must express it in terms of quantities
characteristic of an atom rather than a classical dipole oscillator. As shown
in Appendix B, this force is given by the formula
hw,

F=-Rv=— ( - ) (N1 — N2)By, [p(wo) _ o dp ] v.  (1.92)

3 dw,

As in'the classical Einstein—-Hopf model the condition for thermal equilib-
rium is (A2)/6t = 2RkT or, from (1.91) and (1.92),

_wodp _ (hw M
p(wo) 3 dw,, - (3kT) <N1 — Nz) p(wo)
Fw,/3kT
[m] p(wo). (1.93)

'The solution of this equation is the Planck spectrum. Thus Einstein showed
that in his theory of thermal radiation, “the impulses transmitted by the
radiation field to matter lead to motions that are in accordance with the
theory of heat.”

1.9 Discussion

In Section 1.6 we alluded to the fact that an oscillator (or atom) in its
ground state does not absorb zero-point electromagnetic radiation. The
reason for this is discussed in Chapter 4. The question arises whether an
excited atom undergoes stimulated emission due to the zero-point field.
Let us suppose that it does. Then, according to the Einstein theory
described in the preceding section, the rate at which an atom in level 2 is
stimulated by the zero-point field to drop to level 1 should be given by

7. y(e) hw?
(N2)ltimulnted emission — —B21po(wo)N2 = _B21 (21::23) N2’ (194)
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where we have used equation (1.57) for the spectral energy density po(w)
of the zero-point field. Using (1.85), therefore, we have
An

1
= - ZZ2 ) Ny = —<AnN.
By (2321) 2 5 A2z

(N 2)S:i)mulau-:d emission
1
2
Thus we can almost interpret spontaneous emission as stim?lla.ted e‘mi.ssion
due to the zero-point field — almost because we calculate within Fhl.s inter-
pretation only half the correct A coefficient for spontaneous emission. In
spite of this discrepancy, one repeatedly hears and reads sta.tements to the
effect that “spontaneous emission is induced by the zero—pom.t electromag-
netic field.” We attempt to clarify the situation in the following §ha‘,pters.
The result (1.95), however, does suggest that spor'ltaneogs emission l.xas
something to do with zero-point radiation, even if it is not simply emission
induced by this radiation. Another way to infer this is to use the equation

Ny By

(1.95)

(N 2)spontaneous emission *

=1 + —plWo), (196)
A PR
which follows from (1.81), in equation (1.93):
w, dp hw, B2 ]
-2 = =1 - 0 Wo
o) -2 = e 1 2B pfen)| ple)
a2 9 Agy ] 1 97)
= — ——p(wo)| - )
e O R V. )

The identity (1.85) shows that this result is equivalent to (1:61). But now it
is evident that the second term in brackets is associated with spontaneQus
emission. In other words, the particle term in the Einstein ﬂuctuat.mn
formula is a consequence of spontaneous emission. The fact thz?.t the particle
term may also be related as in Section 1.7 to the zeFo-.pomt field thus
suggests again some connection between spont‘aneous emission and the zero-
point field. This connection will be explored in Chapter 4. '
We noted in Section 1.7 that the particle term was the noncl‘assmal
feature of the Einstein fluctuation formula. In fact th'is term, which we
have just related to the existence of spontaneous emis§lon anfi z‘ero—.pomt
radiation, led Einstein in 1917 to conclude that “Outgoing radiation in the
form of spherical waves does not exist.” ‘ ‘
To understand this conclusion, let us first note that the recoil associ-
ated with spontaneous emission contributes only to the particle 'terrr.1 in
(6t)_1(A2), not to the wave term. Now the wave term has contributions
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from both absorption and stimulated emission (neither of which contributes
to the particle term), and it is obvious from the classical wave picture that
absorption and stimulated emission must cause the atom to recoil, sim-
ply because the field carries linear momentum. But why does spontaneous
emission not contribute likewise to the recoil associated with the wave term?

The reason is simple. In a classical wave description of spontaneous
emission, the radiation is a wave with inversion symmetry about the posi-
tion r = 0 of the atom. Thus any recoil associated with radiation propagat-
ing in the direction r from the atom is cancelled by the contribution from
the radiation in the direction —r. The classical wave pattern associated
with spontaneous emission is, loosely speaking, “everywhere at once,” and
its inversion symmetry precludes any possibility of atomic recoil. In the
quantum-electrodynamical description of spontaneous emission, however,
the radiated field amplitude has the same spatial distribution predicted
classically, but it represents a probability amplitude for directional photon
emission. The expectation value of the net recoil vanishes because there is
no preferred direction of emission, just as predicted by the classical wave
picture. But contrary to the classical wave picture, there is a nonvan-
ishing mean-square momentum transfer to the atom that, for radiation of
frequency w,, is (hwo/c)?. It is in this sense that the classical picture of
outgoing waves fails.

It is perhaps worth noting that the recoil of a spontaneously emitting
atom is an experimental fact, as are the recoils associated with the absorp-
tion and stimulated emission of radiation. In absorption the recoil is in
the same direction as the incoming (absorbed) photon, whereas in stimu-
lated emission the recoil is in the direction opposite to that of the incoming
(stimulating) photon; these are simple consequences of the conservation of
linear momentum. In spontaneous emission the direction of recoil cannot
be predicted, since the direction of the emitted photon is unpredictable.
Recoil accompanying spontaneous emission was inferred experimentally by
Frisch in 1933, and has in recent years been confirmed more accurately.

We conclude the present discussion with a tribute to the unsung experi-
mentalists who so painstakingly measured blackbody spectra: when Planck
fit his formula to their data he obtained h = 6.55 x 10~%7 erg-sec for his
constant, within 1% of the modern value h = 6.63 x 1027, For the Boltz-
mann constant Planck obtained & = 1.35 x 10~ %erg/K, the modern value
being 1.38 x 10~ 16. (Since the universal gas constant R = N4k was known,
Planck also obtained an accurate estimate of Avogadro’s number.)
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1.10 Specific Heats

It was Maxwell, in 1859, who first suggested that classical physics was
wrong. What he later called “the greatest difficulty yet encountered by the
molecular theory” had to do with the theory of specific heats of gases.

The specific heat of a solid will in general have contributions from both
electronic and vibrational degrees of freedom. Except at very high tem-
peratures, however, the electrons are all in their ground states and make
no contribution to the specific heat. Then the N atoms making up the
solid may be regarded as inert vibrators, and under the approximation
of harmonic vibrations the total energy for the 3N degrees of freedom is
U = 3NkT. Thus dU/dT = 3Nk, and the specific heat per mole is

¢y = 3N4k = 3R =~ 6 cal/mole-K (Dulong—Petit law). (1.98)

This classical prediction is the Dulong-Petit law, named after the experi-
menters who observed it in 1819 for 12 metals and sulfur at room temper-
ature. As the temperature is decreased, however, cy is found to decrease,
and ¢, — 0 as T — 0, contradicting the classical prediction (1.98) based
on the equipartition theorem.

It was found in 1840 that the specific heat of diamond is smaller than
6 cal/mole-K even at room temperature. This anomaly was first explained
by Einstein in 1907. Einstein argued that Planck’s equation (1.29) gives
the average energy in thermal equilibrium of each (harmonic) vibrational
degree of freedom, so that”

3Nhv

U=—mr 3 (»1.99)
and
0 2 8IT
Cy = 3R (T) m (1100)

is the specific heat per mole, where 8 = hv/k is the “Einstein temperature,”
the one adjustable parameter in Einstein’s theory. For high temperatures
(T >> 6), equation (1.100) reduces to the Dulong—Petit law. At low tem-
peratures, however, c, is less than the Dulong-Petit value, and in particular
¢, — 0 as T — 0. From a fit to experimental data Einstein deduced that
9 ~ 1300 K for diamond. A substance with such a large value of 6 will have
a small value of ¢, even at room temperature.

7Einstein presented a derivation of equation 1.29) using in essence the quantum-
statistical formula U = E:o-o nhye—"hv kT/z:n-o e~ nhv /AT,
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In 1913 Einstein and Stern, in the paper discussed in connection with
the blackbody problem in Section 1.6, turned their attention to the spe-
cific heats of gases. Their work was motivated by the recent report by
Eucken that the molar specific heat for H, at room temperature was about
5 cal/mole-K, but about 3 at T =~ 60 K. Einstein and Stern suggested
that this behavior was a consequence of molecular rotations and zero-point
energy.

The energy of a dumbbell rotator with moment of inertia I and rota-
tional frequency v is %I (27v)2. Suppose, following Einstein and Stern, that
in thermal equilibrium this energy is given by the Planck equation (1.29):

1 2 hv
U= -2-1(27”/) = mnT 1 (1.101)

The rotational contribution to the specific heat is then
r = N — —— 2 - - < av
¢ = Nagm = Na——— = Na (4n°1v) = ( P )deT , (1.102)

where p = 2721. From equation (1.101) it is clear that v is a function of T,
dv /dT follows by differentiation of both sides of that equation with respect

to T,
v _v[ kT 17
aa-T| T pvi+hv] (1.103)
and it follows from (1.102) that
2p1? kT -1
r — R
¢ - [1 + oy hu] , (1.104)

where v(T) is found by solution of (1.101). The rotational specific heat
calculated in this way for the example p = 2.9 x 10~%° g cm? considered
by Einstein and Stern is shown in Figure 1.1. The predicted dependence
of the specific heat on temperature is quite different from the dependence
observed by Eucken, and in particular the predicted specific heats at low
temperatures are much too large.

Now suppose, however, that equation (1.101) is modified to include
zero-point energy:

hv

1
U= py2 = ——_ehu/kT 1 + -2-h1/. (1.105)

Following the same steps leading from (1.101) to (1.104), it is found that

_ p2p? kT -1
Cr = R k,I, [1 + pl/2 — h2/4p] y (1106)
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Figure 1.1: Experimental data (x) of Eucken on specific heat of molecular
hydrogen; specific heat computed by Einstein and Stern (a) without zero-point
energy [equation (1.104)] and (b) with zero-point energy [equation (1.106)].

where v(T) is obtained by solving (1.105) for v in terms of T The resulting
cr plotted in Figure 1.1is seen to agree very well with Eucken’s observations.
At high temperatures ¢, asymptotes to R =~ 2 cal/moleK, but at low
temperatures ¢, — 0.

Finstein and Stern thus gave a very interesting interpretation of Eu-
cken’s observation that the specific heat of Hy decreased from 5 cal/mole-K
to 3 as T' decreased from 300 to 60 K: because of zero-point energy, the
rotational contribution to the specific heat decreases from 2 cal/mole-K to
0 as T decreases. That is, the existence of zero-point energy causes the ro-
tational specific heat of a gas to “freeze out.” Einstein and Stern concluded
that “The existence of a zero-point energy of size -;-hu [is] probable.”

The Einstein-Stern explanation turned out to be incorrect. The rota-
tional energy levels of a diatomic molecule are given in quantum theory by
E; = BJ(J + 1), where B is a constant characteristic of the molecule and
J=0,1,2,...Therefore a molecule has no zero-point rotational energy. On
the other hand, Einstein and Stern were correct in their hypothesis that the
observed decrease of specific heat with temperature of Hy was connected to
molecular rotations.

According to quantum mechanics, the fact that ¢, and ¢, » 0asT — 0
is due simply to the fact that discrete energy levels are associated with the
internal degrees of freedom of a molecule. If kT is small compared with the
energy separation between the lowest and first-excited energy levels, there
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is a high probability that only the lowest-energy state is occupied, and so
the specific heat corresponding to that degree of freedom is “frozen out” in
the sense that dU/dT decreases with T and approaches zero as T — 0.

As a consequence of the Einstein—Stern paper, the concept of zero-point
energy began to take on greater importance, especially among physical
chemists. This was due in part to the growing interest at the time in low-
temperature phenomena. Stern himself in 1913 used zero-point energy in
a calculation of the vapor pressure of solids.

1.11 X-Ray Diffraction

A.n important question, prior to the first experiments, was whether x-ray
diffraction would be spoiled by the thermal motions of the atoms in crystal
lattices. It was first shown by Debye in 1914 that these thermal motions
basically just reduce the intensity of a diffracted beam from that predicted
for an idealized lattice of stationary atoms. Debye also showed that if
Planck’s zero-point energy were real, there should be such a reduction in
intensity even as T'— 0. We now know that zero-point motion can indeed
have a significant effect on x-ray diffraction. In this section we will briefly
sketch a derivation of the so-called Debye—Waller factor that accounts for
the motion of lattice atoms.

Consider the field far from a collection of identical scatterers. We assume

the nth scatterer at r, has strength p, and write the total scattered field
at r as

Ey(r) = Pn__ -iw(t-|r=Tal)/c _ o—iwt Pn ik|r-1,|
=2 2l

. (1.108)
For distances large compared with the dimensions of the scattering volume
we have

e—rp,| = [rP-2r-r, +r2]Y2 = [l = 2r v, /72 + r2 /P2
rll—r-r,/r?]=r—r-r,/r, (1.109)

R

s0 that k!r—r,,| = kr—(kr/r)-r, = kr—k-r, in the exponential in (1.108),
where k is the wave vector of the (elastically) scattered wave. Thus

~l —iw(t-rfc -iK-
Eu(r) = —e= 0193 p ek Tn (1.110)

r
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We take the strength p, of the nth scatterer to be proportional to the field
E'oe"k"'r" (k, = k) incident upon it: p, = ane'k"'r" and

Ey(r) = fr'-Eoe-"(‘“-’">2e-‘K'rn , (1.111)
n

where K =k — k,. _

For a periodic lattice of scatterers the scattered ﬁeld. (1.111) is nonvan-
ishing only in directions such that K belongs to the reciprocal lattice. For
a one-dimensional lattice, for instance, this means that Kd = 2xn, where d
is the lattice spacing and n is an integer. Since K = (k2 + k2 — 2k, - k]!/? =
[2k2 — 2k2 cos 20]/2 = 2k sin § = (47/))sin g, the condition that K belongs
to the reciprocal lattice is just the Bragg condition, 2dsinf = nA, where
20 is the angle between the incident and scattered (diffracted) waves. .

Now let us take into account the thermal motion of the atoms, replacing
the preceding r, by r, +u, where u represents a displacement from a fixed
lattice site. Then

S K Ky iKore (1.112)
n

n

We are interested in the average of e~ KWU 55 4 undergoes thermal motion:
. 1 1.,
(e"'K'u) =1-iK-(u)— 5((K ) +..=1- glﬁz(uz) +... (1.113

since (u) = 0. The two terms shown explicitly are the ﬁrst two terms of
the Taylor series for exp[—K2(u?)/6]. In fact if the oscillations of u are
assumed to be harmonic we have
(e KWy = e~ KAHuN/ (1.114)
and $mw?(u?) = kT, where m and w, are the mass and frequency of the
harmonic oscillations; for simplicity we assume the elastic restoring forc.e
is the same in all directions. Thus the thermal fluctuations in the atomic
positions cause the diffracted beam to be reduced in intensity by the factor

|(e-iK~U)|2 = C—ZW — e-K’kT/me:' (1115)

This is called the Debye—Waller factor. Our classical hand-waving deriva-
tion gives the correct order of magnitude for this factor.

But the classical model of lattice vibrations breaks down, of course, at
low temperatures. In particular, as T — 0 there is a nonvanishing (u?)
associated with zero-point energy:

mw) (u?) = 3(%’:%), (1.116)
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so that .
W = ¢ R 2mwe for T 0. (1.117)

This gives the correct order of magnitude for the zero-temperature Debye—
Waller factor.

1.12 Molecular Vibrations

Direct evidence for the reality of zero-point energy was provided by Mul-
liken in 1924. Consider the vibrational spectra of two diatomic molecules
differing only by having different nuclear isotopes. The masses of these
two vibrators are then different and consequently so are their vibrational
frequencies. For relatively heavy molecules these differences are small but
readily observable. According to quantum mechanics each molecule has
vibrational energy levels given by Ep = hw[(n + 1) — z.(n + 1)? + ye(n +
%)3+...], where the constants w, z., ¥., ... are characteristic of the particular
molecule, n = 0, 1, 2,..., and the zero-point contributions are included. The
vibrational frequencies are given by |E,, — E,s|/h. Mulliken studied the two
molecules B1°0O'® and B''!0'6. He found that a good fit to the emission
spectra could be obtained only if zero-point energy were included, or in
his words, “if one assumes that the true values of the vibrational quantum
numbers are not n and n’ but each % unit greater ... It is then proba-
ble that the minimum vibrational energy of BO (and doubtless of other)
molecules is % quantum.” It is worth noting that Mulliken reached this con-
clusion based on his spectroscopic data, before Heisenberg (1925) derived
the zero-point energy of a harmonic oscillator from matrix mechanics.

1.13 Summary

Zero-point energy first appeared in Planck’s “second theory” of blackbody
radiation. The concept was quickly adopted by Einstein and Stern, who
showed that it could be used to derive the Planck spectrum from largely
classical considerations. They also showed that rotational zero-point energy
might account for the observed decrease with temperature of the specific
heat of molecular hydrogen. None of these ingenious theories turned out to
be quite correct from a modern perspective.

Zero-point motion played no role in Einstein’s epiphanic paper of 1917
in which he derived the Planck spectrum using his A and B coeflicients.
The great simplicity of Einstein’s derivation, perhaps, ended speculations
about the role of zero-point energy in the blackbody problem. However, we
have seen that zero-point energy of the electromagnetic field has something
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to do with the A coefficient for spontaneous emission, although it cannot
be regarded as the sole “cause” of emission. The role of the zero-point
electromagnetic field in spontaneous emission and other electromagnetic
processes will be discussed in much greater detail in the following chapters.

We have described how zero-point energy appeared and was used during
the development of quantum theory.® Although interest in the concept in
connection with blackbody theory declined after Einstein’s 1917 paper, it
was by no means abandoned. In particular, direct spectroscopic evidence
for the reality of zero-point energy was provided by Mulliken in 1924, just
months before it appeared so naturally in the quantum formalism estab-
lished in 192526, and long before it was to become central to the world-view
of modern physicists.
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Chapter 2

The Electromagnetic
Vacuum

In five minutes you will say that it is all so absurdly simple.
— Sherlock Holmes, “The Adventure of the Dancing Men”
Arthur Conan Doyle

2.1 Introduction

The quantum theory of the free electromagnetic field in the absence of any
sources was formulated by Born, Heisenberg, and Jordan (1926) in one of
the founding papers of quantum theory. The first application was made by
Dirac (1927), who treated the emission and absorption of radiation. The
new quantum electrodynamics (QED) predicted a fluctuating zero-point or
“vacuum” field existing even in the absence of any sources. In this chapter
we consider the quantization of the electromagnetic field, with particular
emphasis on the vacuum state.

According to contemporary physics the universe is made up of matter
fields, whose quanta are fermions (e.g., electrons and quarks), and force
fields, whose quanta are bosons (e.g., photons and gluons). All these fields
have zero-point energy. The oldest and best-known quantized force field
is the electromagnetic one. It is important for us to understand the main
features of the quantized electromagnetic field, not only because quantum
clectrodynamics is “the best theory we have,” but also because it is in many
ways characteristic of all quantum field theories.
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2.2 The Harmonic Oscillator

A monochromatic electromagnetic field is mathematically equiv?,lent to'a
harmonic oscillator of the same frequency. Before shOW}ng this we will
briefly review the harmonic oscillator in quantum fnechamcs. _
The Hamiltonian has the same form as in classical mechanics:
1
H=p2/2m+—2-mw2q2, (2.1)

where now ¢ and p are quantum-mechanical operators in a Hilbert space.
The Heisenberg equations of motion have the same form as the classical

Hamilton equations:
¢ = (ih)"*[g, H] = p/m, (2.2)

p = (ih)~L[p, H] = —mw?q. (2:3)

These follow from the commutation rule [g,p] = qp —P1 = th. We define
the (non-Hermitian) operator

1 .
a= m(p — imwq) (24)
m
and its adjoint 1
af = m(p + imwq), (2.5)
or equivalently
q= i 2::1(4) (a - Gt), (26)
= m;iw (e + aT). (2.7)

From [g, p] = ih it follows that
[a,al] = 1. (2.8)

Equations (2.6)~(2.8) allow us to write the Hamiltonian (2.1) in the form
1
H= %fu.u(aaJf + ata) = hw(aTa + -2-) . (2.9)

The energy levels of the harmonic oscillator are thus determined by the
eigenvalues of the operator N = ala. We denote the eigenvalues and (nor-
malized) eigenkets of N by n and |n), respectively:

N|n) = n|n). (2.10)
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Now (n|N|[n) = (nlataln) is the scalar product of the vector ajn) with
itself. It then follows from (2.10) that n{n|n) = n is real and positive.

Consider the effect on the vector a|n) of the operator N. Obviously
Na|n) = (aN + [N, a])|n) = na|n) + [N,a]|n). But (2.8) implies [N, a] =
—a, and therefore Na|n) = (n—1)a]n). In other words, if |n) is an eigenstate
of N with eigenvalue n, then a|n) is an eigenstate of N with eigenvalue
n—1: a|n) = C|n — 1). By taking the norm of both sides of this equation
we obtain |C|? = n, and without any loss of generality we can choose the
phase such that C = y/n . Thus

ajn) = v/njn - 1). (2.11)
We find similarly that

alln) = Vo ¥ 1jn +1). (2.12)

For obvious reasons a and al are called lowering and raising operators.
We have already noted that the eigenvalues n > 0. But equation (2.11)
shows that we can generate eigenstates with lower and lower eigenvalues
by successive applications of the lowering operator a. Consistency then
requires that a|n) = 0 for n < 1, and (2.11) indicates that this is satisfied
only for n = 0. The eigenvalues n of N = ala are therefore zero and all

the positive integers. That is, the energy levels of the harmonic oscillator
are given by

1
E, =(n+§)hw, n=0,1,2,.. (2.13)

Let us briefly connect this operator approach to that based on the
Schrodinger equation in the coordinate representation. From (2.11) we
have al0) = 0, or (p— imwq)|0) = O for the ground state |0). Thus
(ql(p — imwq)|0) = (q|p|0) — imwq(q|0) = 0. Now (q|0) is the wave func-
tion ¥o(q) and (q|p|0) = (h/i)0%o/dq, so that

(?58; — imwq)Yo(g) = 0 (2.14)

or Po(q) = (mw/wh)!/4e=mw9"/2h when normalized such that [ dg|yo(q)|?
= 1. The excited-state eigenfunctions ¥,(¢) may be obtained by applica-
tion of af according to (2.12): |n) = (n!)_1/2(at)"|0) and

Un(@) = {aln) = () 2@mha) Xl (p + i) 0)
= [@mh) a2 5o+ imon)do(o)

= (@) - 562)%"”2, (2.15)
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where £ = (mw/h)*/%q. These eigenstates are proportional to e~ 12H . (€),
where H,, is a Hermite polynomial of degree n.

Various properties of the harmonic oscillator can be worked out using

either the raising and lowering operators a and al or the eigenfunctions
¥n(q). For instance, we find that (nlgln) = (n|pln) = 0 and

(nlgtln) = = (nl(a - = k3 (210

(nfp?ln) = mhiw(n + %), (2.17)

since (n|m) = 6nm. (Recall that eigenkets corresponding to different eigen-
values are orthogonal in the case of a Hermitian operator like ata.) Thus
AgnApn = (n + 3)h, where (Agn)? = (nlg®|n) — (n|qn)?. This is con-
sistent with the general uncertainty relation AgqAp > /2 and shows that
the ground state of the harmonic oscillator is a state of minimal uncer-
tainty product. In other words, the ground state is a coherent state of the
harmonic oscillator.

2.3 A Field Mode Is a Harmonic Oscillator

We will now take the most elementary route to the quantization of the elec-
tromagnetic field. The first step is to show that a field mode is equivalent
to a harmonic oscillator.

The Maxwell equations for the “free” field, i.e., the field in a region
where there are no sources, are

V.E=0, (2.18)
v.B=0 (2.19)
10B
10E
vxp=iZ (2.21)

We introduce the vector potential A by writing B = V x A. Since v
(Vx A) =0, (219) is automatically satisfied. Equation (2.20) implies
E = —(1/c)0A /6t — V¢, where ¢ is the scalar potential. From (2.21) we
have

10°A _
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in the Coulomb gauge defined by V - A = 0 and, in the absence of any
sources, ¢ = 0. Obviously (2.18) is then also satisfied. Thus we can ob-
tain a solution of the free-space Maxwell equations by solving (2.22) for

tx'le‘ Coulomb-gauge vector potential subject to appropriate boundary con-
ditions.

Separation of variables gives monochromatic solutions

A(r,t) = a(t)Ao'(r) + a*(t)AL(r)
a(0)e™* Ay(r) + a*(0)e’ AL (r), (2.23)

where A, (r) satisfies the Helmholtz equation,
VA () + k2Ao(x) =0 (k=w/c), (2.24)

and q(t) satisfies a(t) = —w?a(t). The electric and magnetic field vectors
are given by

E(r, 1) = —[&(t) Ao(x) + 4 (A1) (2.25)

B(r,) = a(t)V x Ao(r) +a*(t)V x A%(r), (2.26)

and the electromagnetic energy is proportional to
1.
/dar(E2 +B%) = ga(t‘)2 / d3rA,(r)?
1. * ()2 * 2.
+ i@ [ Erazey + Slap [ EriadoP
+ a(t)z/dsr[V x Ao(r)]® + a'(t)2/d3r[V x A(r)]?

+ 20a(t)? / $r|V x Ao, (2.27)

We show in Appendix C that we may take

/ Br[V x Ag(r)]? = k? / Pray(r)?, (2.28)

with similar expressions for the terms involvin

: g [V x A%(r))? and |V
'Ao(r)lz in (2.27) We also note that &(t)? = —w?a(t)?, sinceoo'g(t); = —-i(.«.)lat(t;<
T'hen (2.27) simplifies to .

_ 1 [ 8 p2 k?
Hp = sx/d r(E? +B?) = 5;|a(t)|’, (2-29)
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where, without any loss of generality, we assume the “mode function” A,(r)
is normalized such that

/ PriAm)? = 1. (2.30)
Define the real quantities

o(t) = ——=[a(t) — "), (2.31)

cViar
plt) = 7=l

in terms of which equation (2.29) is

alt) + o* (t)), (2.32)

1
e = 107 4. 239

The notation suggests that our field mode of frequency w is mathematically
equivalent to a harmonic oscillator of frequency w. To prove this we must,
of course, show that ¢ and p are indeed canonically conjugate coordinate
and momentum variables. But this is trivial: from the definitions (2.31)
and (2.32) and & = —wa, we have ¢ = p and p = —w?q, which are the
Hamilton equations that follow from the Hamiltonian H.

2.4 Quantization of a Field Mode

To describe a field mode quantum mechanically, we simply describe the
equivalent harmonic oscillator quantum mechanically. Since the oscillator
with Hamiltonian (2.33) has unit mass, we introduce raising and lowering
operators a and af using (2.6) and (2.7) with m = 1. Comparing with (2.31)
and (2.32), we see that this quantization procedure is equivalent to replac-
ing the classical variable a(t)/ ¢/47 by the quantum-mechanical operator
(h/2w)/2a(t), or a(t) by (27rhc2/w)1/2a(t) and o*(t) by (27|'hc2/w)1/2a'r @®).
That is, except for trivial constants that depend upon the arbitrary nor-
malization chosen for the mode function, a(t) and a*(t) in the classical
theory are replaced by the lowering and raising operators a(t) and af (1),

respectively, in quantum theory.
The classical vector potential (2.23) is thus replaced by the operator

whc? 2
A(r,t)=(2 :‘ ) [a(t)Ao(r) + af (A3 (T)), (2.34)
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a.nd. the operators corresponding to the electric and magnetic fields are
similarly

E(r, t) = i(2rhw)2[a(t)Ao(r) — ol () AZ(T)], (2.35)

Be= (

The Hamiltonian (2.33) for the quantized field mode is now obviously equiv-
alent to

27hc?
w

1/2
) [a()V x Ao(r) +af 1)V x AZ(X)].  (2.36)

Hy = hw(ata + %) (2.37)

The energy eigenvalues of a field mode of frequency w are given by equation
(2.13). The integer n is the number of energy quanta or photons in the field
'mode described by the state |n). The vacuum state |0) has no photons, but
it nevertheless has an energy %hw. The quantum theory of radiation )thus
predicts the existence of a zero-point electromagnetic field. In the vacuum
state, and in all stationary states |n), the expectation values of the electric
and magnetic fields vanish: '

-~

(E(r,1)) = (B(r,t)) = 0, (2.38)

since (nlalrf) = 0. This means that the electric and magnetic field vectors
fluctuate with zero mean in the state |n), although the field has a definite
nonfluctuating energy (n + % )hw. : ’

Consider the expectation value of the square of the electric field. From
(2.35) this is given by

(B2r,t)) = —(2rhw)[(a®(1))A2(r) - (a(t)al (2) + al (B)a(t))
x |Ao(r)| + (af (1)) A%(r)?]. (2.39)

In(tihe state |n) we have (a%) = (ah) =0, (aaT+ata) = (2ata+1) =2n+1
an ,

(E*(x, 1)

1
(n+ -2—)47rhc..)|Ao(r)|2
= 4mhw|Ao(r)|®n + 27hw|A(r)[?
= 4rhw|Ao(r)|*n + (E%(x))o. (2.40)
From the first terrp on the right we can begin to understand how the quan-
tum theory of radiation resolves the “paradox” of the wave-particle duality

o.f light, for this term, which is a measure of the “intensity” (energy den-
sity) of the field at r, has both wave and particle factors. The factor n is
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the number of photons in the field, whereas the factor |Ao(r)|? gives the
same spatial dependence for the intensity predicted by the class.lcal wave
theory. Even in the case of a single photon (n = 1), the classical wave
theory gives the same spatial dependence as quantun} 'theo.ry ttor t.he in-
tensity, but this pattern represents the relative probability distribution for
finding the photon. The detection of a single photon does not Produce‘: the
spread-out classical intensity pattern IAo(r)|2.‘ Instead there is ;e.latlvely
high probability of detecting the photon at points whzere |Ao(r)|* is la.rige,
and low probability where |Ao(r)|? is small. If [Ao(r)l ='0, the probability
of detecting the photon at r is zero. The wave and Partlcle aspects.of the
field are thus reconciled by this association of a particle (photon) with the
classical (wave) intensity pattern. Comparing (2.25) and (2:26) to (2.35)
and (2.36), we can say that the spatial pattern of‘ the field is e)sactly' the
same as predicted classically: the quantum mechanics of the field is entirely
contained, as it were, in its time dependence.

Quantities like (E™(r,t)) with m > 9 are also easy to calculate. Sup-
pose, for simplicity, that A%(r) = Ao(r), so that

E(r,t) = i(2rhw)*[a(t) — af ()]Ao(r) = (4mw?)H2q(t)Ao(x).  (2.41)

. . —wd?lh
Then from the probability distribution [¥a(g))? = (w/wh)ll 2? wg’ /% for a
ground-state harmonic oscillator of unit mass, we easily obtain the proba-
bility distribution

P[E(x, )] = [2n(E*(x))o]"/? exp [-E*(r, )/ 2({E* ()] (2.42)

for the electric field in the vacuum state |0). Thus (E™(r,t))o = 0 for odd
m and

(Em(r,t)0 = [27(E*()]"/? /0°° dEE™ exp [~E*[2(E*(r))o]

g™/ 2g=1/21 (-nl—;——l) (Ez(r))g'/2 (m even). (2.43)

Similar results, with the appearance of Hermite polynomials Hy, are found
for the expectation values of field powers in photon states |n). .

What is the physical significance of these vacuum—sl?ate. expeclztatlon val-
ues, and in particular of (E2(r))o? One thing they indicate is tha:t F,he
electromagnetic vacuum is a stationary state of the field with statistical
fluctuations of the electric and magnetic fields. As far as mt'aasurer'nents
are concerned, however, it is often argued that the entilje universe is ev-
idently bathed in a zero-point electromagnetic field, which can add only
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some constant amount to expectation values, as in equation (2.40). Phys-
ical measurements will therefore reveal only deviations from the vacuum
state. Thus the field Hamiltonian (2.37), for example, can be replaced by

Hy — (0|Hpl0) = -;-ﬁw(aat + ata) _ %ﬁw
= %hw(2afa +1)- %hw
= hwala (2.44)

without affecting any physical predictions of the theory. The new Hamil-
tonian (2.44) is said to be normally ordered (or Wick ordered), the raising

operator at appearing to the left of the lowering operator a. The normally
ordered Hamiltonian 1s denoted : Hg:, 1.e.,

:Hp: = :—;-Tuu(aa't + afa): = hwala. (2.45)

In other words, within the normal ordering symbol we can commute a and™
af. Since zero-point energy is intimately connected to the noncommutativ-
ity of a and at, the normal ordering procedure eliminates any contribution
from the zero-point field. This is especially reasonable in the case of the
field Hamiltonian, since the zero-point term merely adds a constant energy
which can be eliminated by a simple redefinition of the zero of energy. More-
over, this constant energy in the Hamiltonian obviously commutes with a
and a! and so cannot have any effect on the quantum dynamics described
by the Heisenberg equations of motion.

So the argument goes. However, things are not quite that simple, for in
general relativity the zero of energy is not arbitrary. Furthermore we shall
see that it is possible to attribute measurable effects, such as the Casimir
force and the Lamb shift, to changes in zero-point energy. And finally, as
discussed in Section 2.6, the zero-point field is not eliminated by dropping
its energy from the Hamiltonian.

2.5 The Field in Free Space

The generalization of the quantization procedure to a multimode field is
straightforward. In this section we consider the field in free space with no
physical boundaries, in which case the number of allowed modes is infinite.

Obviously the field intensity for infinite free space should be independent
of position so that, from (2.40), |Ao(r)|? should be independent of r for
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each mode of the field. Of course A,(r) must still satisfy the Helmholtz
equation (2.24). A mode function satisfying these conditions is obviously
A, (r) = eke‘k'r, where k - e} = 0 in order to have the transversality
condition V - A(r,t) = 0 satisfied for the Coulomb gauge in which we are
working.

We also wish to normalize our mode functions according to equation
(2.30). To achieve the desired normalization we pretend that space is di-
vided into cubes of volume V = L3 and impose on the field the periodic
boundary condition

A(z+L,y+L,z+L,1) =A(z,y,2,1), (2.46)

or equivalently ) ‘
(ko) by, k2) = _g'(nr’ny,nz)y (2.47)

where each n can assume any integer value. Of course this artificial periodic
boundary condition will be of no physical consequences if L is very large
compared with any physical dimensions of interest. It allows us to consider
the field in any one of the imaginary cubes, and to define a mode function
Ay(r) = v 2eke‘k‘r satisfying the Helmholtz equation, transversality,
and the “box normalization”

/V Bria@)i’ =1, (2.48)

where e} is chosen to be a unit vector.

The unit vector ey, which we take to be real, specifies the polarization
of the field mode. The condition k-ey = 0 means there are two independent
: : _ 2 a2 —
choices for e}, which we call k; and ey,, €k "€y = 0 and ef, =€, = 1.

Thus we define the mode functions

Ay, (r) = V"2, KT (A =1,2), (2.49)
in terms of which the vector potential (2.34) becomes

AN kr | 1 —ikr
Ay, (x,t) = oV [ag, ()™ + akk(t)e lexa (2.50)

or

2rhe? Yz —i(wxt-k-T) 1} iwat-kT)
Ay, (r,t)= oV [ag,(0)e + ap, (0)e lexa
(2.51)
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whert? wi = kc and ay,, aL\ are respectively the photon annihilation and
ctef'itjon operators for the mode with wave vector k and polarization A.
This gives the vector potential for a plane-wave mode of the field. The
condition (2.47) shows that there is an infinite number of such modes. The
linearity of Maxwell’s equations allows us to write

9nhe?\/? k t k
A(r,t) = kZ ( oV ) [ag, (@)™ T + ay,(t)e™* Tlek, (2.52)
p

for the total vector potential in free space.
Using the fact that

3 . * _ <3
/V drAy, () - A, () = & 1. 6an (2.53)

we find from the same sort of analysis as in the preceding section that the
field Hamiltonian is

1
He =Y hwr(af,ap, +3) (2.54)
ka

for the infinity of modes in free space. This is the Hamiltonian for an infinite
number c?f uncoupled harmonic oscillators. Thus the different modes of the
field are independent and satisfy the commutation relations

[aga (D), GL, NOIEXSWINY (2.55)

and [agy (8), aon (8)] = [a]. (1), af, ()] = 0. From (2.52) it follows that

. omhuwy \ . .
E(r,t) = zkz ( ”V“”“> [ag, (£)e KT — aL\(t)e_’k'r]ekA, (2.56)
A

) 27he?\ M/ k f k
B(r,t) = l; ( oV ) lag, ()T — ap, (e Tk x e),. (2.57)
A

It is worth noting that the free-space mode functions (2.49) form a
complete set for transverse vector fields satisfying our periodic boundary
condition. That is, the plane-wave modes A}, (r) form a complete set in
Perms of which any mode of the field may be expanded. This is essentially
just a statement of Fourier’s theorem about the completeness of sines and
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cosines. Of course the Ak)‘(r) are complete only for modes satisfying the
periodic boundary condition, but in a slightly more sophisticated approach
we can work with a complete continuum of plane-wave mode functions in
which the k vectors are not restricted to the discrete spectrum (2.47) (Chap-
ter 10). This has formal consequences such as the replacement of 6?( K in
(2.53) and (2.55) by §3(k — k'), but since it has no physical consequences
here, we will just stick to the periodic boundary condition.
The linear momentum of the field is given classically by P = (1/4=c)

x [, @r(E x B). In the case of the quantized field we use (2.56) and (2.57)
in this expression and obtain, after straightforward manipulations,

1
P= Z hk(a;(v‘ab‘ + 5) (2.58)
ka

Obviously [P, Hr] = 0, so that the linear momentum of the field in the
absence of any sources is a constant of the motion. It is also obvious that
the eigenvalues of P are 3_j, ik(ny,+ 1), where each nisa positive integer
or zero. A stationary state of the free field is thus characterized by the set
of photon numbers {n),}. The state |{nx,}) has a total photon number

2 ko Mk o an energy

1
E = Ehwk(nk)‘ + 5), (2.59)
ka
and a linear momentum
1
P =) hk(ng, + 5) (2.60)
ka
or
E=) huiny, (2.61)
ka
P =) hkny, (2.62)
kx

if the zero-point energy and linear momentum associated with the vacuum
state are discarded. Note that the zero-point momentum Yk %hk in fact
vanishes since for each k there is an equal contribution from —k in the
summation.

We have thus arrived at the quantum theory of the free electromagnetic
field in which stationary states are described by photons of energy hwy and
linear momentum Ak. Since E2—P?c? = h?(w? —k2c?) = 0 for each photon,
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the photons have zero rest mass. The theory also implies that photons
are bosons, i.e., that the stationary states are symmetric with respect to
permutations of identical photons. To see this, note from equation (2.12)
that the n-photon state |n) of a field mode may be written in the form.

atys
In) = ( \/% |0), (2.63)

which is obviously symmetric with respect to any permutations of the n
photons. Of course the boson character of photons is just a consequence of
the commutation rule (2.55), from which (2.63) follows.

The k vector of a photon of mode (k, A) specifies the energy and linear
morper}tum of the photon. The polarization index A is connected with the
intrinsic angular momentum, or spin, of the photon. To establish this con-

nection we first note that the intrinsic angular momentum may be defined
by the formula!

1
M, = — /V &r(E x A). (2.64)

From (2.52) and (2.56) we obtain for M, the expression
y k(al
M, =ih %: k(a0 - aLlak2), (2.65)
A

where the unit vector k = k/k = e}, x ey,. This operator does not

com'mute with at ay,, and therefore a photon number state |n,) is not
an eigenstate of M. To construct simultaneous eigenstates of energAy linear
momentum, and intrinsic angular momentum of a photon we deﬁ,ne the
complex unit polarization vectors

1 .
ek‘+1 = —\/;(ekl + 1ek2), (2.66)

1 ,
e, = \/;(ek1 —iey,), (2.67)

satl.sfylng ei‘m ‘e, = baa’ ei‘(a X ek = iaﬁ&aa:, a = +1. It is
casily seen that, whereas our original polarization vectors ey, with A = 1,2
b

l . .
See, ff)r ms‘tnnce,‘ Heitler (1966), Appendix, Section 1. It is worth noting that (2.64)
s gauge-invariant, since the vector potential is transverse in the Coulomb gauge em-

ployed here, and the transveme part of th ial i
ployed e, an P e vector potential is unaffected by gauge



48 The Electromagnetic Vacuum

correspond to two orthogonal linear polarizations, the new polarization
vectors e, with a = +1 correspond to opposite circular polarizations. We
define the photon annihilation operators for the circularly polarized modes
(k,a) by

1 . .
K41 = _\/;(ah —ia),), (2.68)

1 .
ak,—l = \/-g'(ak1 + ulkz), (269)

in terms of which

M;=h ;l}(a}(’+lak,+l - a;[c,—lak,—l) = Z ahkaLaaka (2.70)

a

and Hr = D ko hwkaT aaka,P =Y ka hkaLaaka. With circularly polar-
ized mode functions, therefore, M commutes with Hr and has the photon
number state |nj ) as an eigenstate with eigenvalue ahk,a = £1. In other
words, the component of the photon spin along the direction of propaga-
tion, the photon helicity, 1s 41 in units of k, which means that a photon is
a boson of spin 1. Ordinarily we will not be concerned with spin and will
employ the linear polarization basis.

2.6 Necessity of the Vacuum Field

The vacuum state |vac) of the free field is defined as the ground state in
which ny, = 0 for all modes (k,A). The vacuum state, like all stationary
states of the field, is an eigenstate of the Hamiltonian but not the electric
and magnetic field operators. In the vacuum state, therefore, the electric
and magnetic fields do not have definite values. We can imagine them to
be fluctuating about their mean values of zero, as discussed in Section 2.4
for the case of a single mode of the field.

In a process in which a photon is annihilated (absorbed), we can think
of the photon as making a transition into the vacuum state. Similarly, when
a photon is created (emitted), it is occasionally useful to imagine that the
photon has made a transition out of the vacuum state. In the words of

Dirac (1927),

The light-quantum has the peculiarity that it apparently ceases
to exist when it is in one of its stationary states, namely, the zero
state, in which its momentum, and therefore also its energy, are zero.
When a light-quantum is absorbed it can be considered to jump into
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this zero state, and when one is emitted it can be considered to jump
from the zero state to one in which it is physically in evidence, so
that it appears to have been created. Since there is no limit to ,the
number of light-quanta that may be created in this way, we must

suppose that there are an infinite number of light-quanta in the zero
state ...

We shall see later that an atom, for instance, can be considered to be

« » M M 3 M
dressed” by emission and reabsorption of “virtual photons” from the vac-
uum.

Thle mo§t .glar?ng characteristic of the vacuum state is that its energy
Yk 35wk is infinite. Let us use (2.47) to make the well-known replacement

The zero-point energy density is thus

1 1 2 1 4
% kE’\ Qhwk = 87['3 /d kihwk = P dkkz(—z-hwk)
—_ h 3
= 33 /dww ) (2.72)

or in other words the spectral energy density of the vacuum field is

huw3
po(w) =553 (2.73)

which is familiar from Chapter 1. The zero-point energy density in the
frequency range from w; to ws is therefore

waq h
d —_— 4_ .4
/ " dopefe) = gt o) (2.74)
‘This can be large even in relatively narrow, “low-frequency” regions of the
spectr.um. In the optical region from 400 nm to 700 nm, for instance
equation (2.74) yields about 220 erg/cm3. ,

A Ip Section 2.4 we noted that the zero-point energy of the field can be
:-lunlnat.ed fx"orp thvﬁs Hamiltonian by the normal ordering prescription. How-
ever, thlS. elimination does not mean that the vacuum field has been ren-
(h-ll-ed ummpqrtant or without physical consequences! To illustrate this
point we consider now a linear dipole oscillator in the vacuum.
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The Hamiltonian for the oscillator plus the field with which it interacts

is )
H= 2—11;(p — %A)’ + imexz + Hp. (2.75)
Of course this has the same form as the corresponding classical Hamiltonian,
and the Heisenberg equations of motion for the oscillator and the field
are formally the same as their classical counterparts. For instance, the

Heisenberg equations for the coordinate x and the canonical momentum
p = mx + eA/c of the oscillator are?

x = (ih)~[x, H] = %(p -2a), (2.76)

b= (i) ![p, H] = ~5-V(p — ZA)? — mulx
= - Lip-La) vi-2a)- (- 2A)

x V x [—%A] — mw?x

=Z(x-V)A+ Z% x B — mw}x, (2.77)
or
mk = p—%A= —%[A—(J':-V)A]+%5c x B — mw?x
= eE+ %5: x B — mw?x, (2.78)

since the rate of change of the vector potential in the frame of the moving
charge is given by the convective derivative A = OA /0t + (x - V)A3 For
nonrelativistic motion we may neglect the magnetic force and replace (2.78)
by

e e 27w hwy 1/2 1
% +wix = —n_l.E = _1; z ( - ) [ag () — oy, (Dle,- (2.79)
ka

As in Chapter 1 we have made the electric dipole approximation in which
the spatial dependence of the field is neglected. The Heisenberg equation

2The Hamiltonian for a charged particle in an electromagnetic field is reviewed in
Chapter 4. In (2.77) we employ the vector generalization of the identity [p, F(q,p)] =
—ihOF[9q. .

3This follows from the general relation iAdAs/dt = [A:, H] + ih0Az /0L,

Necessity of the Vacuum Field 51

for ay, is found similarly from the Hamiltonian (2.75) to be

1/2
dk,\ = —iwkak/\ + e (M:V) X - €k (280)

in the electric dipole approximation. In deriving these equations for x, p,
and ay, we have used the fact that equal-time particle and field operators
commute. This follows from the assumption that particle and field opera-
tors commute at some time (say, ¢ = 0) when the matter—field interaction
is presumed to begin, together with the fact that a Heisenberg-picture op-
erator A(t) evolves in time as A(t) = U t(®)A(0)U(t), where U(t) is the
time evolution operator satisfying ihU = HU, Uf(t) =U-(¢),U(0) = 1.
Alternatively, we can argue that these operators must commute if we are
to obtain the correct equations of motion from the Hamiltonian, just as the
corresponding Poisson brackets in classical theory must vanish in order to
generate the correct Hamilton equations (see also Section 4.2).
The formal solution of the field equation (2.80) is

. 2w 12 . f
1) = —fwyt . /] (1 piwk (t' =) .
ap, (t) = ag, (0)e +ie (hka> /0 dt'ep, - x(t')e , (2.81)
and therefore equation (2.79) may be written
% +wlix = %Eo(t) + -%ERR(t), (2.82)

where

rhwp\ ? ; ;
E.(t) = iz (2 Z k) [ag, (0)e™"** — aL\(O)e“""']ek'\ (2.83)
kx

and
41re ! / > ! 1
Err(t) = -5 Z dt'[ey, - x(t')]ley, coswy(t' —1). (2.84)
kr 70
We show in Appendix D that we may take

2e ..
ERR(t) = 3_(,'3 X (285)
for the radiation reaction field, if the mass m in (2.82) is regarded as the
“observed” mass.



52 The Electromagnetic Vacuum

The total field acting on the dipole has two parts, E,(t) and Err(?).
E,(t) is the free or zero-point field acting on the dipole. It is the ho-
mogeneous solution of the Maxwell equation for the field acting on the
dipole, i.e., the solution, at the position of the dipole, of the wave equation
[VZ — ¢~282/8t?]E = 0 satisfied by the field in the (source-free) vacuum.
For this reason E,({) is often referred to as the vacuum field, although it
is of course a Heisenberg-picture operator acting on whatever state of the
field happens to be appropriate at £ = 0. Egr(t) is the source field, the
field generated by the dipole and acting on the dipole.

Using (2.85) in (2.82), we obtain an equation for the Heisenberg-picture
operator x(t) that is formally the same as the classical equation (1.41):

Xtwix—TX= 7f;l«:o(t), (2.86)

where again 7 = 2¢2/3mc>. But here we have considered a dipole in the
vacuum, without any “external” field acting on it. The role of the “exter-
nal” field in equation (2.86) is played by the vacuum electric field acting on
the dipole.

Classically, of course, a dipole in the vacuum is not acted upon by any
“external” field: if there are no sources other than the dipole itself, then
the only field acting on the dipole is its own radiation reaction field. In
quantum theory, however, there is always an “external” field, namely, the
source-free or vacuum field Eo(t).

According to equation (2.81) the free field is the only field in existence
at ¢ = 0. This defines t = 0 as the time at which the interaction between
the dipole and the field is “switched on.” The state vector of the dipole-
field system at t = 0 is therefore of the form |¥) = |vac)|¥p), where |vac)
is the vacuum state of the field and |#p) is the initial state of the dipole
oscillator. The expectation value of the free field is therefore at all times
equal to zero: (Eo(t)) = (¥|E(t)|¥) = 0 since ay, (0)|vac) = 0. However,
the energy density associated with the free field is infinite:

e - 23 () ()
x (agex (0)a}.,,,(0))
217; 2 (3”_";&) = /0 " dwpo(w). (2.87)

The important point is this: the zero-point field energy in Hr does not af-
fect the Heisenberg equation for a, , since it is a c-number (i.e., an ordinary

Il

Necessity of the Vacuum Field 53

number rather than an operator) and commutes with ap,. We can there-
fore drop the zero-point field energy from the Hamiltonian, as is usually
done. But the zero-point field re-emerges, so to speak, as the homogeneous
solution of the field equation. A charged particle in the vacuum will there-
fore always see a zero-point field of infinite energy density. This is the
origin of one of the infinities of quantum electrodynamics, and it cannot be
eliminated by the trivial expedient of dropping the term >, %hwk in the
field Hamiltonian.

The free field is in fact necessary for the formal consistency of the theory.
In particular, it is necessary for the preservation of commutation relations,
which is required by the unitarity of time evolution in quantum theory:
[2(2), p: (0] = U @)2(Q)U (1), U )= (U )] = U (1)[=(0), p-(O)IU () =
ihU t(t)U (t) = ih. We can calculate [z(t), p;(t)] from the formal solution of
the operator equation of motion (2.86). Using the fact that [ay, (0), aL, ,\,(0)]
= 6?( k,&»:, and that equal-time particle and field operators commute, we
readiiy obtain

[2(), p-(1)] = [2(t), mz()} + [2(¥), %Az ®)] = [2(2), mz(2)]

_ ihe? 8w > dwwt
- 212mc3 3 /0 (w? — w2)? 4 128 (2.88)

in the mode continuum limit (2.71). For the dipole oscillator under consid-
eration it can sensibly be assumed that the radiative damping rate is small
compared with the natural oscillation frequency, i.e., Tw, << 1. Then the
integrand in (2.88) is sharply peaked at w = w,, and*

2ihe? o0 dr 2ihe?w3 T
t),p.(t)] = 3 = )\ —
[2(t), p:(0)] 3rmed e [_oo z2 + 1208 ( 3rme3 ) (ng)

= ih. (2.89)

R

We can appreciate further the necessity of the vacuum field by making the
small-damping approximation directly in (2.86): X = —w?2x(t), X = —w?2x,
and

% + 1wk + wix %Eo(t). (2.90)

Without the free field E,(t) in this equation the operator x(t) would be
exponentially damped, and commutators like [2(t), p.(t)] would approach
zero for t >> (tw?)~!. With the vacuum field included, however, the

{Actually (2.89) follows exactly from (2.88), as may be shown using the residue
theorem.
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commutator is ik at all times, as required by unitarity, and as we have just
shown. A similar result is easily worked out for the case of a free particle
instead of a dipole oscillator (Milonni, 1981b).

What we have here is an example of a “fluctuation—dissipation relation.”
Generally speaking, if a system is coupled to a “bath” that can take energy
from the system in an effectively irreversible way, then the bath must also
cause fluctuations. The fluctuations and the dissipation go hand in hand; we
cannot have one without the other. In the present example the coupling ofa
dipole oscillator to the electromagnetic field has a dissipative component, in
the form of radiation reaction, and a fluctuation component, in the form of
the zero-point (vacuum) field; given the existence of radiation reaction, the
vacuum field must also exist in order to preserve the canonical commutation
rule and all it entails.

The spectral density of the vacuum field is fixed by the form of the
radiation reaction field, or vice versa: because the radiation reaction field
varies with the third derivative of x, the spectral energy density of the
vacuum field must be proportional to the third power of w in order for (2.88)
to hold. In the case of a dissipative force proportional to x, by contrast,
the fluctuation force must be proportional to w in order to maintain the
canonical commutation relation (Milonni, 1981b). This relation between
the form of the dissipation and the spectral density of the fluctuation is the
essence of the fluctuation—dissipation theorem.®

The fact that the canonical commutation relation for a harmonic oscil-
lator coupled to the vacuum field is preserved implies that the zero-point
energy of the oscillator is preserved. It is easy to show that after a few
damping times the zero-point motion of the oscillator is in fact sustained
by the driving zero-point field (Senitzky, 1960). '

The reader may well wonder whether the vacuum field is merely some
sort of formal mathematical artifice of quantum electrodynamics, whether it
really has any unambiguous experimental manifestations. In fact the zero-
point field does appear to be quite “real,” as we shall see in the following
section.

2.7 The Casimir Effect

Casimir showed in 1948 that one consequence of the zero-point field is an
attractive force between two uncharged, perfectly conducting parallel plates
(Figure 2.1). In this section we review a standard calculation of the Casimir
force, and in the following chapter we present a somewhat more physical

SH. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
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z=0 z=d

Figure 2.1: Two conducting parallel plates experience an attractive force at-
tributable to the zero-point electromagnetic field. This is the Casimir effect.

variation of this calculation. Various Casimir effects, and experimental
evidence for them, are discussed in Chapters 7 and 8.

The physical situation shown in Figure 2.1 leads us to consider a dif-
ferent set of modes than the free-space plane-wave modes we have dealt
with thus far. Consider first the modes appropriate to the interior of a
rectangular parallelepiped of sides L, = L, = L and L,. For perfectly con-
ducting walls the mode functions satisfying the boundary condition that
the tangential component of the electric field vanishes on the walls are
A(r) = Ay(r)i+ Ay(r)j + A:(r)k, where

Ag(r) = (8/V)M%a, cos(k,z)sin(kyy) sin(k, 2), (2.91)
Ay(x) = (8/V)2ay sin(k, z) cos(kyy) sin(k, z), (2.92)
A.(r) = (8/V)/?a, sin(kzz) sin(kyy) cos(k, z), (2.93)
with a? + a2 + a2 =1,V = L*L,, and
k; = %—, ky = %, k, = -1-1-7[, (2.94)
, L,

with ¢, m, and n each taking on all positive integer values and zero. In
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order to satisfy the transversality condition V - A = 0 we also require
koAg + kyAy + kA, = %(ZA, +mAy) + Ll(nA,) =0. (2.95)

Thus there are two independent polarizations, unless one of the integers

¢, m, or n is zero, in which case (2.95) indicates that there is only one
polarization. It is easy to check that equations (2.91)—(2.93) define trans-
verse mode functions satisfying the Helmholtz equation (2.24) as well as
the condition that the transverse components of E vanish on the cavity
walls. Furthermore these mode functions are orthogonal and satisfy the
normalization condition (2.30), i.e.,

/OL dz /0 ’ dy /0 - dz[A2(r) + A2(r) + A%(r)] = L. (2.96)

Actually all we really require for the calculation of the Casimir force are
the allowed frequencies defined by (2.94):

2 g2 p2 1/2
Wemn = k¢mnc = 7C [fz‘ + fz" + fg] (297)
The zero-point energy of the field inside the cavity is therefore
1 2 m? n? 1z
' — ! - —_— —_—
> (2)5wemn = > 'xhe [L2 + 3+ Lg] : (2.98)
trmy" imn

The factor 2 arises from the two independent polarizations of modes with
¢,m,n # 0, and the prime on the summation symbol implies that a factor
1/2 should be inserted if one of these integers is zero, for then we have just
one independent polarization, as noted earlier.

In the physical situation of interest L is so large compared with L, = d
that we may replace the sums over £ and m in (2.98) by integrals: 3, —

S (L/m)? [ [ dksdky and

E@) = Z'(z)%nwlmn-»%(hc)z' /0 dk, /o dk,

tmn n

2.2\ 1/2
x (k§+k§ +"—d’;—> . (2.99)

This is infinite; the zero-point energy of the vacuum is infinite in any finite
volume.
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If d were also made arbitrarily large, the sum over n could be replaced
by an integral. Then the zero-point energy (2.99) would be

L2 d 0 [o <] 00
E(oo):-ﬁ(hc); /0 dk; / dk, / dk, (k2 + k2 + k2)"/2. (2.100)
0 0

which is also infinite.

The potential energy of the system when the plates are separated by a
distance d is U(d) = E(d) — E(c0), the energy required to bring the plates
from a large separation to the separation d:

L?he o i 2,2
Ud) = — [E’/O dkz/O dky (k2 + k2 + "d;' )3

d 00 o0 [s o]
——/ dk,/ dky/ dk, (k2 + k2 + kf)lﬂ] .
mJo 0 (]

(2.101)

This is the difference between two infinite quantities, but we shall now show
that it is nonetheless possible to extract from it a physically meaningful,
finite value.®

In polar coordinates u,0 in the k;, ky plane (dk.dk, = ududf) we have
_ L?hcm P e ,  n?w? 12
Ud = = (—2—) Lz—;) /0 duu (u + 7)

_ (;) /ooo dk, /Ooo duu(u® + kf)‘/"] , (2.102)

since § ranges from 0 to /2 for k,,k, > 0. We now introduce a cutoff
function f(k) = f([u® + k2]'/?) such that f(k) = 1 for k << km and
f(k) = 0 for k >> kp,. Physically, it can be argued that f(k) is necessary
because the assumption of perfectly conducting walls breaks down at small
wavelengths and especially for wavelengths small compared with an atomic
dimension. We might then suppose that k,, = 1/a,, where a, is the Bohr
radius. What we are assuming here is that the Casimir effect is primarily
a low-frequency, nonrelativistic effect. We thus replace (2.102) by

L?h o0
U(d) = 7r2c(.72—r) [z’[) dlfu(u2+n_z‘;r—2)l/2f([u2+%:—2]1/2)

n=0

_ (;) /:o dk, /ooo duu(u? + k22 f([u? + kf]m)]

8See Section 10.7 for a different approach.
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LT?‘C(Z_; [Z I /0°° dz(z + n2)1/2f(%[z +n2]H/?)

_ '/om dk Z';odz(z+K2)1/2f(§_[z+K2]1/2)] ’ (2.103)

where we have defined the new integration variables z = u?d?/x? and
k& =k.,d/m. Now

U(d) = (1:::36) L? [% F(0)+'§F(n) - /o ~ an(n)] . (2:104)

where

F(x) = /0 ” dz(z + k2)!/? f(%[:c + &212). (2.105)

According to the Euler-Maclaurin summation formula’

3 ~ = _Ypo) - LF(©0)+ =F"(0) .. (2.106)

> F(n) - i dcF(k) = ~5F(0) - 13 =0 (2

n=1

for F(00) — 0. To evaluate the nth derivative F(*)(0) we note that
o g
P = [ dw/af G, F)=-20(G0. (2100

x3

Then F'(0) = 0, F""(0) = —4, and all higher derivatives F(®)(0) vanish if
we assume that all derivatives of the cutoff function vanish at k = 0. Thus
T F(n) - [ deF(k) = —3F(0) — 735 and

w2he\ [ —4 n2he ) 2
= | — — ==l L, 2.108
U(d) = ( 443 ) L (720) (720d3 ( )
which is finite and independent of the cutoff function. The attracti.ve.force
per unit area between the plates is then F(d) = —n2hc/240d*. This is the
Casimir force, which we shall revisit in the following chapter and again in
Chapters 7 and 8. The principal message of this section is that changes in

the infinite zero-point energy of the electromagnetic vacuum can be finite
and observable.

7See M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover
Books, New York, 1971), Formula 3.6.28. For a derivation of the Euler-Maclaurin fo'r-
mula, see, for instance, E. T. Whittaker and G. N. Watson, A Course of Modern Analysis,
4th ed. (Cambridge University Press, New York, 1969), p. 127.
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2.8 Field Commutators

The fundamental field commutator (2.55) holds for all times ¢, and regard-
less of whether there are any sources of radiation. From this commutator
one readily obtains commutation relations for the field vectors, such as

[Ei(r1,t), Ej(rz,t2)] = [Bi(r1,t), Bj(rz,t2)]

_ ) b;; 9?2 92
= A4mihc <—c—"’_3t16t2 — 31’1.'37‘2,-)

x D(lr1 —r2|,t1 — t2), (2.109)

1)’ 3l ikr
“\37 d lc;e sin wyt

where

D(x,t)

1 * ) -
= 53 [_oo dksin krsin kct
1
= m[&(r + ct) — §(r — ct)). (2.110)

These “Pauli-Jordan commutators” imply that the fields at space-time
points (r,;) and (r2,t2) cannot in general be simultaneously measured if
these points can be connected by a light signal, i.e., if |r; —ra| = te(t1 —12).
Similarly

52

[E,'(l‘l,tl), B; (rg,tg)] = 41rihce,~jk——D(|r1 —ra|,t1 —t2).  (2.111)
bt16rak

The physical significance of these commutators was discussed by Bohr and
Rosenfeld (1950): since the field of a charged particle provides information
about the motion of the particle, the uncertainty relations (AzAp; > h/2,
etc.) for the particles must, for the consistency of quantum theory, imply
uncertainty relations also for the field. These uncertainty relations for the
electromagnetic field are embodied in the Pauli-Jordan commutators. Note
that D(r,t) = —D(r, —t), and so lime_,o D(r,t) = lim;_.o(8%/0t*)D(x,t) =
0. Equation (2.110) then indicates that in principle the electric and mag-
netic fields can be simultaneously measured everywhere in space at a fixed
instant of time.

Note also that these field commutators are derived for free space. The
presence of boundaries or even simple point sources will in general lead to
different commutation relations, simply because kT ip (2.110) must be
replaced by different mode functions.®

8This is discussed in the papers by Milonni (1982) and Cresser (1984) cited at the
end of the chapter.
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2.9 Zero-Point Spectrum Invariance

We have seen in connection with the classical Einstein-Hopf model that a
dipole oscillating with frequency w, moving with velocity v through a ther-
mal field, experiences a frictional force F = —Rv, where R is proportional
to p(w) — (w/3)dp/dw. The same result holds when the dipole is treated
quantum mechanically or if, as shown in Appendix B, the dipole is replaced
by an atom.

At T = 0 we have p(w) = po(w) = hw3/272c® and

w dpo

po(w) T 0. (2.112)
In other words, there is no frictional force acting on a dipole or atom
moving with constant velocity in the vacuum. The zero-point spectrum
proportional to w3, which is precisely the form required by the fluctuation—
dissipation relation (Section 2.6), is thus the the unique spectral energy
density for which there is no force. Alternatively, we can say that, since the
number of modes per unit volume in free space is proportional to w?, the
energy -%hw per mode is the unique zero-point energy for which there is no
force. The “uniqueness” refers, of course, to the functional dependence on
w; any zero-point energy proportional to w, or any spectral energy density
proportional to w?, will satisfy (2.112).

In fact it has been shown explicitly by Boyer (1969), using the Lorentz
transformations for the electric and magnetic fields, that po(w) is the unique
Lorentz-invariant spectral energy density of the electromagnetic field. That
is, the condition that po(w) be the same in all inertial frames requires it to
be proportional to 3. This conforms with our expectation that an observer
moving with constant velocity in the electromagnetic vacuum cannot tell
that he is moving!

2.10 The Unruh—Davies Effect

What if the observer is moving with constant (proper) acceleration in the
vacuum? Then a remarkable thing happens: the observer perceives himself
to be immersed in a thermal bath at the temperature T = ha/2rkc, where
a is the acceleration. This result was obtained by Unruh (1976), following a
closely related result of Davies (1975). In this section we shall demonstrate
this thermal effect of acceleration for the case of a scalar field, for which
the calculation is simpler. The electromagnetic case is somewhat more
complicated but the result is the same.
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. We consider a massless scalar field ¢(x,t) satisfying the wave equa-
t102n (V2 — ¢=28%/t2)¢ = 0 and having an energy density (1/87){(V4)® +
c~2(9¢/0t)?].° When quantized in free space ¢(x,t) has the form

rhe?\ /2 ; ;
é(x, 1) = ; (2w :‘V ) [ag @)e™® X + af (H)e=%¥), (2.113)

where again we assume periodic boundary conditions. Here, ay(t) and

at (t) are boson annihilation and creation operators and ay (t) = ap (0)ew?
for the free field, with wi = kc. The Hamiltonian is

1
Hy = _8_7r_ / Pr [(V¢)2 + %2.(%?-)2] = Zhwk(ait(ak + -;—) (2.114)
k

Everything here is much the same as in the case of the electromagnetic
field, but simpler.

Consider the field correlation function {¢(0,t)¢(0,¢ + 7)) at a point in
space for a field in thermal equilibrium at temperature T. In this case
(aL(O)ak,(O)) = 6i’k,ﬁ(w), fi(w) = (e"/*¥T — 1)~1. These results are intu-
itively obvious. Basically they imply that different modes of a thermal field
are uncorrelated, each mode amplitude having zero expectation value, and
that a mode of frequency w has an average number of quanta 7(w). Thus

9rhe?

woosetsm = 3 (55 [l

+ (a (B)ag(t +7)]

27rhc2 -— TWxT — — Wk T
= %: ( oV ) [(A(we) + 1)e™*™ +Ti(we)e ]

h o iwr * dww coswT
p [/0 dwwe +2[) W—_—l—] . (2.115)

The first integral may be evaluated as follows:

00 00
dowe™™ = li dwwe(THi7) = | 1 __1
| Jim A wwe ll_l"r(l) GoE - o (2.116)

9See Section 10.3.
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The second integral follows from the general formulal?

om dzizl:;lg’fﬁ = (-1)'"3‘?—:;"% [% coth wb — 515] . (2117)
Thus
* dwweoswr _ 1 (”_’“z)z csch? ("kTT) (2.118)
/0 elFT _1 12 h A
and
2
((0,)6(0,t+ 7)) = ;"; [—;17 T (#) csch? (wkrirr)]
= —2?2 (“_’;Z)Z esch? ("k;fr> . (2.119)

Let us consider also the correlation function (o(y, t)o(y + x,t + o
in the vacuum state of our scalar field. In this case (ak(0)ag.(0)) =

(a}.(0)ay.(0)) = 0 and (g (0)al, (0)) = 6 1, and from (2:113) we obtain

2rhe?\ _ikx iwer
(b Dy +xt+N0 = }E(-;’k—v—)e xe

2 oo . 3
_ ke / dkk?w™ e /koe"k'x,
472 0 .
(2.120)

where the last integral is over all solid angles about k:

2x | 4 " 0
/koe_ik'x = / d¢/ dfsin et "% = 4w
0 0

sinkz (5 121)

Thus

het /00 dkkzw'le‘”T——Sin kz
7 Jo

($(y,t)d(y +x,t+ 7))o e

S GRS S (2.122)

T 2 —c21?

10[,. S. Gradshteyn and I. M. Rhyzhik, Table of Integrals, Series, and Products (Aca-

demic Press, New York, 1980), p. 494, No. 13.
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We turn now to an observer undergoing uniform acceleration in the vac-
uum. Uniform acceleration here is defined with respect to an instantaneous
inertial frame in which the observer is at rest. The proper acceleration a is
the acceleration relative to this instantaneous inertial rest frame, and if a is
constant the acceleration is said to be uniform. The acceleration dv/dt in
the lab frame may be related to a using standard Lorentz transformations

for acceleration: o2
d 2
d_’t’ =a (1 - :_2) . (2.123)

Simple integrations give v(t) = at(1 + a®t?/c?)~'/2 and z(t) = ¢*/a[(1 +
a?t?/c?)}/? — 1] if we assume v = =z = 0 when t = 0. Using the relation
dt = dr(1—v?/c?)~1/2 between lab and proper time intervals, respectively,

we have " s
dt a2t2 - a2t2
dar (1 T2y a2t2) = (1 + —cz—) (2.124)

t(r) = gsinh % (2.125)

and

if we define (7 = 0) = 0. We can use this result to express z and v in the
lab frame in terms of the proper time 7:

2
z(r) = =[cosh == — 1}, (2.126)
a c
v(r) = ctanh Ec: (2.127)

We recall as an aside the motion of a particle of rest mass m acted upon
by a constant force F. In this case the linear momentum p = Ft = mv(1 —
v2/c?)"1/2 and so v = (Ft/m)[1 + (Ft/mc?)]"Y/? and = = (mc?/F)([1 +
(Ft/mc?)]'/? — 1), which are the results given previously for a = F/m. The
world line is a hyperbola in the z — ¢ plane, with asymptote z = ct, and
consequently this motion is often called hyperbolic motion. For Ft << mc?
we have the classical parabolic motion, z(t) = 1at?.

The vacuum correlation function (¢(zy,t1)¢(x2,t2))o measured by our
uniformly accelerated observer is given by (2.122) with z = z;—z; and 7 =
ta—ty, or z = (c?/a)[cosh(ary/c)—cosh(ary /c)] and T = (c/a)[sinh(atz/c)—
sinh(ar; /c)]. Since

4 4
Cc aTy an c . aTy . aTy
z? - *r? = —[cosh—= — cosh —1J? - = [sinh —= — sinh —?
a c ¢ a c c

4 .sinhn __—_0(1'2 — ")

a7 T (2.128)
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it follows from (2.122) that

ha? a(re— T
($(z1,t1)b(22,t2))o = —;Egcschz—(—%z—i-)-, (2.129)
which is equivalent to the thermal-field correlation function (2.119) with

temperature
ha

T= 2rke’
The meaning of this result is that a uniformly accelerated detector in
the vacuum responds as it would if it were at rest in a thermal bath at
temperature T' = ha/2mkc. In a sense the effect of the acceleration is to
“promote” zero-point quantum field fluctuations to the level of thermal
fluctuations. It is hardly obvious why this should be so — it took half a
century after the birth of the quantum theory of radiation for the thermal
effect of uniform acceleration to be discovered.

(2.130)

2.11 Thermal Radiation

There are two reasons for reviewing aspects of thermal radiation in this sec-
tion and the next. First, certain statistical properties of thermal radiation
are similar to those of the vacuum field. Second, the quantum theory of
thermal radiation provides a clearer picture of some results used in Chapter
1, particularly in connection with the role of the zero-point (vacuum) field
in the blackbody problem.

The probability P, that there are n photons in a field mode of frequency
w in thermal equilibrium at temperature T — that is, that the mode is
excited to the harmonic oscillator level n — is

e—(n+1,-)ﬁw/kT e—nhw/kT
Po = S iR e
— e—ﬂh‘”/kT(l _ e-h“’/kT)_l . (2131)

The average photon number is thus
00
=y nPy= (eMFT 1)1, (2.132)
n=0

and we can use this result to write Py in terms of T:

"

Pn = W . (2133)
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Since there are (w?/m%c®)V dw modes of the field in the frequency inter-
val [w,w+dw] in a volume V large compared with c/w, the spectral energy
density is p(w) = hwfi(w)w?/72c3, which of course is the Planck spectrum
without the zero-point contribution. ’

. The results (2.131)-(2.133) depend only on the frequency of the radia-
tion, not its wave vector k or polarization A. Thermal radiation as described
by the Planck spectrum is isotropic and unpolarized.

We can use (2.133) to calculate averages of functions of n. For instance,

(n?) =) _ n’P, =2’ +7, (2.134)
n=0
and so
(An?) = (n?) — ()2 =22 +A -2 =T° + T, (2.135)

whicl.l is a well known consequence of Bose-Einstein statistics.!?
Since p(w) = hw3A(w)/72c3, we can write (2.135) in the form

w23 [7r2c3

An@) = 55 [2500 o)

w2c3 n2c3
= 53 [hwp(w) + sz(w)] . (2.136)

The variance in the energy of the thermal field is thus

(AE?) = anwgmn(wk)?)qé%m) / PER%w? (An(w)?)
ka
%
= n) / duww?(Fw?)(An(w)?) = / (AE2),
(2.137)
where
9 %4 4 n2c3
(AE?) = mhzw (An(w)*)dw = [Awp(w) + —; P(w)]Vdw. (2.138)

This is the Einstein fluctuation formula (1.63).
And so Einstein’s fluctuation formula can be regarded as a precursor
of the result (2.135) of Bose-Einstein statistics. From the discussion in

11Gee, for instance, L. D. Landau and E. M. Lifshitz, Statisti i i
, , L. D. . M. , Statistical Ph —
Wesley, Reading, Mass., 1969), p. 355. e eics (Addison



66 The Electromagnetic Vacuum

Section 1.7 we can associate mZ in (2.135) with wave fluctuations, and 7
with particle fluctuations.

In Section 1.7 we also inferred that the particle fluctuation term could
be attributed to the zero-point energy of the field. To appreciate this from
the perspective of the quantum theory of the field, note that

(An?) = (n?) — (n)? = (ataata) - (a)[a)2
= (at(ata + 1)a) - (a)fa)2
(atataa) + (ata) - (a'ta)2
= (atataa) +7 - 72, (2.139)

where a is the photon annihilation operator for the field mode under consid-
eration. Now a mode of a thermal field is described by the density matrix

p=_ Paln)(nl, (2.140)

and therefore

(atataa) = E(n|ata1aa|n). (2.141)
But aa|n) = v/naln— 1) = y/n(n—1)jn - 2), so that
(atataa) = Z:on(n _1)P, = g;on(n - 1)(?:"_;7,3 —om?  (2.142)

for a thermal field. Then (2.139) reproduces (2.135). But note that the
particle term 7 in this formula arises from the second term in the last
line of (2.139), i.e., from the fact that the commutator [a,al‘] = 1. Note
furthermore that this same commutator gives rise to the zero-point energy
of a harmonic oscillator such as a field mode, as is clear from equation (2.9).
The conclusion is obvious: the particle term in the Einstein fluctuation
formula, or equivalently (2.135), is closely linked to the existence of zero-
point energy. ‘

The “wave” fluctuation term %2 in the variance (An?) for thermal radi-
ation arises from the factor of 2 in (atataa) = 27?. This important factor
is the origin of Brown-Twiss correlations,1? also known as photon bunch-
ing. Suppose we take a spectrally filtered beam of thermal radiation and

12} Hanbury Brown and R. Q. Twiss, Nature 127, 27 (1956); Proc. Roy. Soc. Lc‘)nd.
A242, 300 (1957). For a discussion of the Brown-Twiss effect see, for instance, Knight
and Allen (1983); Loudon (1983); Milonni (1984).
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employ a detection scheme in which photons are counted by two-photon
absorption rather than ordinary one-photon absorption. That is, a photo-
electron is produced by the simultaneous absorption of two photons. As
shown in Appendix E, such a detector responds to the normally ordered
field correlation function (atafaa) if we have a single field mode. The fact
that this quantity exceeds 72 indicates that the photons have a statistical
tendency to arrive in pairs. Such photon bunching of thermal radiation was
first measured by Brown and Twiss in the 1950s.

It is worth noting that this “photon bunching” may be understood
in purely classical terms, based on the Einstein—-Hopf model of a thermal
field as a superposition of waves with independent random phases (Section
1.5). Comparing equations (1.67) and (1.68), we note that (E4(x,t)) =
2(E%(r,1))?, or TZ = 2T°. Thus there are positive intensity correlations or,
in photon language, a tendency for photons to arrive in pairs.

It should be emphasized that photon bunching is not a universal prop-
erty of light. An ideal laser, for example, gives (atataa) = 72, indicating
that the photon arrivals are uncorrelated. In other words, an ideal laser
has no wave fluctuations: (An2?) = 7. It is the closest we can get to the
idealized, nonfluctuating classical wave of light.

A thermal field, like the vacuum field, is described by Gaussian statistics.
Consider for simplicity a single mode of the field, for which the electric field
operator is given by equation (2.35). The characteristic function of a single
component of this field, which is defined as

C[E(r,t),€] = (XFTD), (2.143)
gives the probability distribution P[E(r,t)] via a Fourier transform:
PEG,0)] = 51; / dee—EC[E, £]. (2.144)
Using (2.35), we have

ClE(x,t),€] = (eif(““""“.“t)), (2.145)

where a = i(27hw)Y/2 A,(r). For a thermal field, according to Bloch’s the-
orem for a harmonic oscillator in thermal equilibrium,!3

(eeatatally _ =Elali ) (2.146)

13F Bloch, Z. Phys. T4, 295 (1932). See also W. H. Louisell, Radiation and Noise in
Quantum Electronics (McGraw-Hill, New York, 1964), p. 244.
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so that, from (2.144),

P[E(r,t)] = LD (2.147)

E

with ; )
u= 2|a|2(Ti+ -2-) = 47rhw|Ao(r)|2(ﬁ+ -2-) (2.148)

Comparing (2.147) with the distribution (2.42) for the case of the vacuum
field, we see that both the vacuum and thermal fields are distributed ac-
cording to a Gaussian probability distribution. The vacuum distribution is
just the T — 0 limit of the thermal distribution. These results are easy to
generalize to the multimode case.

2.12 Thermal Equilibrium

We now turn our attention once more to the Einstein—Hopf model of ther-
mal equilibrium between radiation and matter, this time treating both the
radiation and the dipole oscillators quantum mechanically (Milonni, 1981a).
This will allow us, among other things, to better understand the Einstein—
Stern derivation of the Planck spectrum discussed in Section 1.6.

The impulse imparted to a dipole oscillator in the quantum-mechanical
version of the Einstein-Hopf model is given by equation (1.48), but now z(t)
and 0E,(t)/0x are quantum-mechanical operators. For the dipole oscillator

we introduce lowering and raising operators, o and at, respectively, as in
Section 2.2: z = i(h/2mw,)'/*(o — at),[a, at] = 1. For 0E,/0z we have,
from (2.56),

OE, orhwy \
-y ( k k) N ROETING) (2.149)
ka

at the position r = 0 of one of the dipole oscillators. Thus

T OE,(t)
€ A dtz(t)_—a.’l,‘——

, BoO\V/? orhwe \ /2
()" ()
° ka

x /0 " dtfo(t) - ot (O){aga () + al, (O] (2.150)

A
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We shall assume that the dipole-field coupling is sufficiently weak over

the time irllterval [0, 7] that o(t) and ay,(t) follow approximately their
free evolution in (2.150): of(t) = o(0)e” ! = ge~ ™! and ay,(t) =
ap, (0)e ™t = ap, e~" et ' *

R\ (2B \ P .
T (2mw ) Z( 7I-V k) k,ek)‘z [oak)‘/ die—t(wrtwa)t
¢ ka 0

A
R Y / dpeiler=ee)t — h.c.]
0

. h 1z 27rhwk 1/2
= (2mwo> ; ( vV ) kzey,,
A

sin 2(wy +w,)T

A

R

x [ork'\e"'(“’""'“"’)’/z

%(wk + w,)
f f(wk—wo)7/2 sin %(wk - wO)T
—_oa (4 o r— rere——— —
ka L(wr — w,) h.c (2.151)

Terms involving wg +w, do not in the end contribute to (A?), just as such
“energy nonconserving” terms do not contribute to transition probabilities
in standard second-order perturbation theory. Thus

(B2 by \ V2
_16(2mw0) %2( Vv ) kxek,\z
A

sin -;-(wk —w,)T

A

R

x [oa]  e@r=w)/2 _h.c]

o (2.152)
and
2 o~ 2f 2R 2nhwy\ 4 o Sin? & (wg —w,)T
(A%) = e k) k2e 2k
() T (57 ¥ 255
x [(aaf)(a}uahwr (ot o) (apral,)] - (2.153)

R _
Let us write (ak)‘“k,\> = 7i(w) and (ak'\a;[u) = (aL\akA)+1 =7(w)+1,
and proceed to the mode continuum limit V — oo in (2.153):

2h Vv 2mhw in2 l(w -
AZ) = 2 v 3 2 o Sin’3(w—wo)T
(A% ¢ (mw,,) (8#3) /d k ( Vv )k”;ekxz (W — w,)?
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x [(ootym) + (et o)) + V)

22 k2\ sin? 3w —wo)T
- <k /dakwkg(l—k—;)s_—L(————)—

272 mw, (w—wo)?

x [(w’i)ﬁ(w) + (ol o)mw) +1)] . (2.154)

In writing this expression we have used the identity z = gfti)ﬁ+2 2 €k xs e];'E N
for any unit vector Z, and therefore s eih =1—(k-2)?=1-k;/k.

Now
k2 k2 4+ k2
/d3kk,2, (1 - k—fi) /dklcz/dﬂkk?, (—ﬁ_!
= /dk/dnka(k§+k§)
2x x
/dkk‘/ d¢/ df sin 8(sin 6 cos ¢)?sin’ 6
0

0
= 167 dkk* = lﬁr—/dww‘ (2.155)
15 15¢%

and so

8e2h? gsin? 2(w — wo)T

(Az) = m /0 w (w — wo)?
x [(aa'f)ﬁ(w) + (ot Fw) + 1)

aif:::: [(“T () + (o7 o) (F(wo) + 1)]

N /°° deinz 3(w —wo)T
0 (W —wo)?

4;27::;3 (oot )W) + (ot o)) +1)] 7. (2.156)

R

R

As in the classical Einstein—Hopf model the condition for thermal equ?-
librium is 7~ 1(A2) = 2RkT [Equation (1.47)]. From (2.156) and (1.43) this
condition is

o) — 2 2L = o [ttt + (oto)mwa + ] (2157
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Now the dipole is just another harmonic oscillator, and so in thermal equi-
librium (00’1) = (c‘r‘t o) +1="T(w,) + 1, whence

(0o Va(w,) + (T ) AWo) +1] =  2A(wo)[A(wo) + 1]
7l'2c3 2 w3
= 2 ( hw:g ) [p2(wo) + :zc;p(wo)];

(2.158)

where we have again employed the relation %i(w,) = (#x2¢%/hw3)p(w,). Then
equation (2.157) yields exactly the Einstein-Stern equation (1.55), whose
solution is the Planck spectrum.

It is hardly surprising that the quantum theory of the Einstein-Hopf
model produces the Planck spectrum for the spectral energy density of
radiation at thermal equilibrium. What is of interest is to see just what
about the quantum theory leads to the Planck spectrum rather than the
Rayleigh-Jeans spectrum of the classical Einstein—Hopf model. To this end

we use the identities aot =olo + 1 and akAa;‘(A = aL\akA + 1 to write
1
(adt)(aL\ak,\) + (ata)(akxa;‘u) = 2 [(”t”)(ai,\akx) + 5(010)
1
+ §(aluak,\)] . (2.159)

Without the term %(afa) + %(at Aak)‘) in this expression we are led to
the Rayleigh—Jeans spectrum. 111(1 other words, the Planck spectrum is
a consequence of the quantum-mechanical commutation rules [o, at] =
[ak'\,aL\] =1

For a more physical interpretation of the role of quantum mechanics,
let us note that in the final expression for 771(A?) only the field modes
at wy = w, contribute. These modes impart a mean-square momentum
transfer proportional to

(o [t oymtwe) + g oTo) + Jtwe)| = (Fc) )
+ H;‘p(HOSC) + H:EC(HF)’ (2'160)

where Hoee = hwo(ata) and Hf = hwoata are the Hamiltonian operators
for the dipole oscillator and a resonant field mode, respectively, excluding
zero-point energies, and HXP. and HE® are the corresponding zero-point
energies (= %hw,) Were it not for the zero-point energies in (2.160), we
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would obtain the classical Rayleigh- Jeans spectrum instead of the Planck
spectrum. These terms give rise to the “particle” term proportional to
p(w,) in (2.158).

All this is consistent with the classical discussion in Section 1.6. Since

HZP(Houe) + HE(Hr) = 2HZL(Hr) = hwo(HF), (2.161)

a classical theory of the Einstein—Hopf model that includes a zero-point
energy hw, for a material oscillator, but not for any field oscillator, leads
to the same equation (2.157) of quantum theory, and therefore gives the
Planck spectrum. This was the approach of Einstein and Stern.

Alternatively, we can include in the classical theory a zero-point energy
-,i;hw,, for both the material oscillator and a field mode of frequency w,,
and this too leads to the Planck spectrum, as discussed in Section 1.6.
This approach is closer to the (quantum-mechanical) truth. But in such
a classical approach we must follow the ad hoc procedure of dropping a
contribution 1Aw,po(w,), which arises from the product H?®_HE®. There
was really no justification of this Ansatz in Section 1.6 other than the fact
that it gave the Planck spectrum.

In the quantum theory just presented, the terms HEP(Hosc) and HZE
x (H) leading to the Planck spectrum arise “automatically” from the zero-
point energies of the dipole and field oscillators or, more formally, from the
commutation properties of the dipole and field operators. But there is no
term HZP HP that had to be dropped ad hoc in the classical approach to
the Planck spectrum presented in Section 1.6. In other words, the quantum
theory of the Einstein—-Hopf model apparently does not allow for any effect
of the interaction between a ground-state dipole oscillator and the vacuum
field.

We must be careful here about what we mean by the “effect” of the
vacuum field on ‘a ground- state dipole oscillator. The dipole coordinate
obeys the Heisenberg equation of motion (2.86), and we have shown that the
vacuum field is necessary for the preservation of the canonical commutation
relations for the dipole coordinate and momentum operators, regardless of
the state of the dipole. In this sense the vacuum field certainly has a formal
“effect.” Physically, however, a dipole oscillator in its ground state shows
no obvious effect of its interaction with the vacuum field: a ground-state
oscillator in the vacuum remains forever in its ground state. Whereas an
excited dipole oscillator can undergo spontaneous emission attributable in
part to the vacuum field, there is no such thing as “spontaneous absorption”
by a ground-state oscillator in vacuum. We shall see that in the ground state
of an atom spontaneous absorption is precluded by an exact cancellation of
vacuum field fluctuations by fluctuations in the atom.
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2.13 Summary

In the quantum theory of the electromagnetic field, classical wave ampli-
tudes a, a™ are replaced by operators a, af satisfying {a, at] = 1. The quan-
tity |a|? appearing in the classical expression for the energy of a field mode
[cf. equation (2.29)] is replaced in quantum theory by the photon number
operator ala. The fact that [a, aTa] # 0 implies that quantum theory does
not allow states of the radiation field for which the photon number and a
field amplitude can be precisely defined, i.e., we cannot have simultaneous
eigenstates of ala and a. The reconciliation of wave and particle attributes
of the field is accomplished via the association of a probability amplitude
with a classical mode pattern, as discussed in Section 2.4. The calculation
of field modes is an entirely classical problem, while the quantum properties
of the field are carried by the mode “amplitudes” a and al associated with
these classical modes.

The zero-point energy of the field arises formally from the noncommuta-

tivity of @ and al. Thisis true for any harmonic oscillator: the zero-point en-
ergy %hw appears when we write the Hamiltonian H = p?/2m+ -.1;m<.azq2 =
%hw(aa]t + aTa) as ﬁw(ata + 1) [Equation (2.9)].
. This zero-point energy can be dropped from the Hamiltonian by redefin-
ing the zero of energy, or by arguing that it is a c-number and therefore
has no effect on Heisenberg equations of motion. However, when we do this
and solve the Heisenberg equation for a field operator, we must include the
vacuum field, which is the homogeneous part of the solution for the field
operator. In fact we showed in Section 2.6 that the vacuum field is essential
for the preservation of commutators and the formal consistency of the the-
ory. When we calculate the field energy we obtain not only a contribution
from any sources which may be present, but also a contribution from the
vacuum field. The latter is of course the zero-point field energy. In other
words, the zero-point field energy “reappears” even though we may have
deleted it from the Hamiltonian.

As we saw in the first chapter, the concept of zero-point energy arose
before the development of the quantum formalism. However, in quantum
theory zero-point energy rests upon a much firmer foundation than was
possible classically. This is illustrated by a comparison of the Einstein—
Stern theory of blackbody radiation with the quantum theory presented in
Section 2.12.

Observable phenomena like the Casimir effect strongly suggest that the
vacuum electromagnetic field and its zero-point energy are real physical
entities and not mere artifices of the quantum formalism. In the following
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chapter we shall turn to other things that similarly suggest the physical
reality of the fluctuating vacuum electromagnetic field.

Finally, the Maxwell equations (2.18)—(2.21) are satisfied by the electric
and magnetic field operators in the quantum theory of the field. Maxwell
was lucky: his equations turned out to be Lorentz—invariant and gauge—
invariant, and to retain the same form in quantum theory. But whereas in
classical physics one makes the “natural” assumption that E=B = 0 in
the absence of any sources, this cannot be done in quantum theory. Such
an assumption is not only inconsistent with quantum theory; it would also
appear to contradict experimental facts such as the Casimir force, the Lamb
shift, and other effects to which we turn in the following chapter.
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Chapter 3

Some QED Vacuum
Effects

[My father] said, “I understand that they say that light is emitted
from an atom when it goes from one state to another, from an excited
state to a state of lower energy.”

I said, “That’s right.”

“And light is a kind of particle, a photon, I think they call it.”

“Yes.”

“So if the photon comes out of the atom when it goes from the
excited to the lower state, the photon must have been in the atom in
the excited state.”

I said, “Well, no.”

He said, “Well, how do you look at it so you can think of a particle
photon coming out without it having been there in the excited state?”

I thought a few minutes, and I said, “I'm sorry; I don’t know. 1
can’t explain it to you.”

— Richard P. Feynman, The Physics Teacher (September 1969).

3.1 Introduction

We noted in the preceding chapter that Dirac’s theory of emission and
absorption (1927) was the first application of the quantum theory of radi-
ation. The importance of Dirac’s theory of spontaneous emission has been
emphasized by Weinberg (1977):

... This problem was of crucial importance, because the process of
spontaneous emission of radiation is one in which “particles” are
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actually created. Before the event, the system consists of an excited
atom, whereas after the event, it consists of an atom in a state of lower
energy, plus one photon. If quantum mechanics could not deal with
processes of creation and destruction, it could not be an all-embracing
physical theory ... Dirac’s successful theory of spontaneous emission
of radiation confirmed the universal character of quantum mechanics.

Dirac argued that his theory “must presumably give the effect of radia-
tion reaction on the emitting system.” Spontaneous emission was also inter-
preted in terms of radiation reaction in the theory of Landau (1927) and,
before the development of the quantum formalism, by van Vleck (1924).
However, contemporary physicists, when asked to give a physical expla-
nation for the occurrence of spontaneous emission, generally invoke the
vacuum electromagnetic field. This view was popularized by Weisskopf
(1935) and later by Welton (1948), who argued that spontaneous emission
“can be thought of as forced emission taking place under the action of the
fluctuating field.” In the following chapters we show that these two inter-
pretations — based on radiation reaction or vacuum field fluctuations —
are in fact closely related in the quantum theory of radiation. We show
furthermore that various other effects can be interpreted equally well in
terms of radiation reaction or vacuum field fluctuations.

What are these “vacuum fluctuation effects”? The first example that
is usually cited is the Lamb shift, or sometimes the Casimir force between
conducting plates. In this chapter we consider these and other manifes-
tations of the vacuum electromagnetic field. Our aim is not to present
detailed calculations, but to emphasize the physics of the vacuum field. For
this reason we adhere strictly to the formalism of the quantized field only
when it is absolutely necessary.

3.2 Spontaneous Emission

Spontaneous emission is ultimately responsible for most of the light around
us. For a thermal source the ratio of the spontaneous and stimulated emis-
sion rates for radiation of frequency w, is (Section 1.8)

A2l hwa kT _
Boplon) e 1. (3.1)
The sun may be regarded for our purposes as a blackbody radiator at the
temperature T' = 6000 K. At this temperature the ratio (3.1) is about 400
at the wavelength A = 400 nm, and about 30 at A = 700 nm. Most of the
visible output from the sun, therefore, is due to spontaneous rather than
stimulated emission.
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As we shall see in the following chapter, spontaneous emission can be
_correctly described only when the radiation field is quantized; if the field
is not treated quantum mechanically we obtain predictions in conflict with
experiment. Nevertheless some aspects of spontaneous emission are ade-
quately described without the full machinery of quantum electrodynamics.
In this section we use some simplistic arguments to derive the A coefficient
for spontaneous emission and to provide some preliminary evidence for the
interplay between radiation reaction and vacuum field fluctuations. -

Consider the rate Rj; of stimulated emission in a broadband field of
spectral energy density p(w,). According to the discussion in Section 1.8
this r_ate is B2y p(w,) for an atomic transition from level 2 to level 1 with,
transition frequency w, = (E2 — E1)/h. The Einstein B coefficient for stim-
ulated emission is given by the standard formula

(3.2)

where d is the electric dipole matrix element for the transition 2 — 1 and
d = |d|. Thus

Ry = ird p(wo). ' (3.3)

'I;his result follows also from the classical formula (1.7) when we replace
e /n; by (e2/m)f, with f the transition oscillator strength defined as
2md*w,/e?h. (See the remark at the end of Appendix A.) That is,

Wa _ 2n%? ( 27%e?
hw, 3mhwop wo) —

fp(wo) = Ra. (3.4)

3mhw,

. According to.equation (3.3) the vacuum electromagnetic field should
induce an atom in the excited level 2 to make a downward transition to
level 1 at the rate (transition probability per unit time)

Rvp = (47r2d2> hod \  2d%3 1
F 3h2 Im2e3 - 3563 —§A21) (35)

4w)here Ao is the Einstein A coefficient for spontaneous emission (Chapter
We have thus arrived at the same result found in Section 1.9: the vac-
uum field induces transitions at a rate equal to half the spontaneous emis-
sion rate. Evidently spontaneous emission cannot simply “be thought of as
forced emission taking place under the action of the fluctuating field.”
Consider now the effect of radiation reaction. As shown in Appendix A
the radiation reaction field is responsible for the rate 2e2a?/3¢3 at which an
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oscillating charge loses energy to the electromagnetic field. For oscillation
at frequency w, with amplitude z, this rate is

de  2e2wiz? 2,42
-c-i% = —i?-)%;—x—o- cos? wot — i_;ﬁ;_“’_o (3.6)

when we average over a cycle of oscillation. Since € = mw2z? is the energy
of oscillation, we have
de e2w?
_— = =—a 3.7
dt (3mc3 © (3.7)

and so e?w?/3mc® is the rate of emission attributable to radiation reaction.
The replacement of e2/m by e2 f/m as previously gives

e?w? 2md?w 2d%w3 1
= 9 g = -——2' = —A .
Rar (3mc3> ( e%h ) 3k 2 (3.8)

for the emission rate due to radiation reaction.
On the basis of this simplistic semiclassical analysis, therefore, we have
arrived at the conclusion that Rrr = Rvr = %Azl and

A21 = Rvr + RRr- (3.9)

In other words, both the vacuum field and radiation reaction induce transi-
tions at the rate —;—Azl, and the two together give the Einstein A coefficient
for spontaneous emission.

As noted earlier, modern physicists generally think of spontaneous emis-
sion as a consequence of the vacuum field. Weisskopf (1981), for instance,
writes that “spontaneous emission appears as a forced emission caused by
the zero-point oscillations of the electromagnetic field.” The fact that the
vacuum field gives only half the correct A coefficient in this simplified pic-
ture does not seem to be widely appreciated, although it has been em-
phasized by several authors (Ginzburg, 1983; Milonni, 1984), and in his
well-known textbook Schiff (1968) indirectly acknowledges it:

... From a formal point of view, we can say that the spontaneous
emission probability is equal to the probability of emission that would
be induced by the presence of one quantum in each state of the ra-
diation field. Now ... the smallest possible energy of the field corre-
sponds to the presence of one-half quantum per state. This suggests
that we regard the spontaneous emission as being induced by the
zero-point oscillations of the electromagnetic field; note, however,
that these oscillations are twice as effective in producing emissive
transitions as are real photons and are of course incapable of produc-
ing absorptive transitions.
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- These arguments indicate that the “missing one-half” comes from radi-
ation reaction. Of course these arguments are semiclassical and oversimpli-
fied; the main purpose of the following chapter is to refine these arguments
using the quantum theory of radiation. We will also show why the vac-
uum field is “of course incapable of producing absorptive transitions”: in
the lower state of an atomic transition the effects of the vacuum field and
radiation reaction cancel, so that the “spontaneous absorption” rate is
1

1
2A21 - ‘2‘A21 =0. (3.10)

A2 = Ryr — Rpr =

3.3 Atomic Stability

The fact that an accelerating charge loses energy by radiating implies, ac-

cording to classical ideas, that an electron should spiral into the nucleus and

that atoms should not be stable. The balancing of the effects of radiation

reaction and the vacuum field implied by (3.10), however, suggests that the

stability of atoms might be attributable to the influence on the atom of the

vacuum field. We now give a simplistic argument in support of this idea.

Using equation (3.4) we write :

2,2 2,3

27‘e Folws) = e fhws

for the rate at which an atom absorbs energy from the vacuum field. But

according to (3.6) there is also a loss of energy at the rate

Wa =

(3.11)

3m 3mc3

e? fwiz?
3c3

d;le to radiation, where we have again made the replacement e?/m —
e’ f/m. Equating (3.11) and (3.12), we obtain

Wem = (3.12)

mziw, = h, (3.13)
which will be recognized as the Bohr quantization condition for the ground
state of a one-electron atom.

This “derivation” of the Bohr quantization condition obviously should
not be taken very seriously. It suggests only how Bohr’s quantization con-
dition, at least for n = 1, might have been interpreted by physicists in 1913.
We now know that the vacuum field is in fact formally necessary for the
stability of atoms in quantum theory: as we saw in Section 2.6, radiation
reaction will cause canonical commutators like [z, p;] to decay to zero un-
less the fluctuating vacuum field is included, in which case commutators
are consistently preserved.
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3.4 The Lamb Shift

The solution of the Schrodinger equation for the hydrogen atom gives energy
levels depending only on the principal quantum number n. In the solution
of the Dirac equation (Chapter 9) the spin-orbit coupling partially lifts
this degeneracy, but states with the same n and the same total angular
momentum quantum number j, such as 2515 and 2py 2, remain degenerate:

01 -1/2

. (3.14)

E=mc? |1+ z
n—(+ 3+ + D -

where a = e2/hc = 1/137 is the fine structure constant, n = 1,2,3,...00,
and j +-% < n. Experiments in the 1930s indicated that the 25,/ and 2py/2
energies might actually differ, but the data were not sufficiently accurate
to draw any definite conclusions, and other experiments appeared to con-
firm the prediction of degeneracy. In 1947, however, Lamb and Retherford
performed experiments showing convincingly that the 2s,/; level lies about
1000 MHz, or 0.030 cm~1, above the 2p;;; level. Shortly thereafter they
reported a more accurate value near 1060 MHz. This tiny energy difference
is called the Lamb shift.

According to the energy level formula (3.14) predicted by the Dirac
equation, the energy difference between the 2ps/2 and 2p; /2:251/2 levels
is = a*mc?/32, corresponding to a frequency of about 11,000 MHz or a
wavelength of about 2.7 cm. A simplified energy level diagram for the
n = 2 states of hydrogen, including the Lamb shift, is shown in Figure 3.1.

The fact that the 25,72 — 2p3/2 (and 2sy/3 — 2p1/2) transition wave-
length lies in the microwave region allowed Lamb and Retherford to utilize
advances in microwave technology made during World War IL. The basic
idea of their experiment is as follows. First a beam of H atoms is produced
by thermal dissociation of H, in an oven. The atomic beam is then bom-
barded with an electron beam that collisionally excites about 108 of the
atoms into the 2s;,, state. This state is metastable, since (one-photon)
spontaneous emission to the 1sy/; ground state is forbidden (Al =0). The
radiative lifetime of the 25/, state is thus very large (= 1/7 sec) and is
due to two-photon spontaneous emission to the ground state. The 2sy/2
atoms are detected by the fact that they cause emission of electrons when
they are incident on a metal target. Excited atoms incident on the metal
thus produce an electric current, while ground-state atoms do not. Now the
application of a field at the 25172 — 2p3/2 (or 28172 — 2p1/2) transition fre-
quency induces transitions to a p state which quickly decays to the ground
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2P1/2

Figure 3.1: Energy level diagram for the n = 2 states of the hydrogen atom.

state by spontaneous emission. Application of a field of the appropriate fre-
quency .thus reduces the electric current at the detector of excited atoms
(The microwave field can be held fixed while the transition frequency is:
Zeeman—shlfte(-l with a magnetic field.) In this way Lamb and Retherford
(1947) determined that the 2s,/; — 2p, /5 level shift was about 1000 MHz
In 1952 they reported a value of 1058.27 4+ 1.0 MHz based on more reﬁned
measurements. The Lamb—Retherford experiments and analysis were re-
markably accurate. Since then various other experimental techniques have
.been employed, and the currently accepted value for the 2s,,5 — 2 hift
in hydrogen is about 1057.85 MHz.! S
The Lamb shift and its explanation marked the beginning of modern
quantum electrodynamics. In the words of Dirac (1989), “No progress was
made for 20 years. Then a development came, initiated ’by Lamb’s discov-
ery and explanation of the Lamb shift, which fundamentally changed the
cha'racter of theoretical physics. It involved setting up rules for discardi
... infinities ...” e
The reason the Dirac theory leading to (3.14) fails to account for the
l.amb shift is that it ignores the coupling of the atomic electron to the
vacuum e.lectromagnetic field. Actually the Lamb shift turns out to be
a prc.adc?mmantly nonrelativistic effect, and can be understood in part b
modifying the Schrodinger theory of the hydrogen atom to include trl)le cou):

'For a review sce Drake (1982).
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pling to the vacuum field. We therefore consider the nonrelativistic theory
with Hamiltonian (Chapter 4)

2
H=Ha+ Hp — —A -p+-—5A%, (3.15)
me 2mc?
where H is the Hamiltonian operator for the atomic electron and, as in the
preceding chapter, A is the vector potential, H is the field Hamiltonian,
and we make the electric dipole approximation of neglecting any spatial
variation of A.

If the field is treated according to standard classical electromagnetic
theory, the vector potential A = 0 in the vacuum and so there is no field
to perturb the atomic energy levels. This is not the case when the field
is quantized; standard second-order perturbation theory gives the follow-
ing expression for the shift in the atomic level n due to the interaction

—(e/mc)A - p:

|(m, Lj, R m,s vac)|?
AE, = ZZ - k—A E'k’\— - , (3.16)
m ka " m -
e [2nhc? 12
her = e ( oV ) (i P G40

where we follow the notation of Chapter 9 for the field in free space. Hence,
AE, is the energy shift of the state |n, vac) in which the atom is in sta-
tionary state n and the field is in its vacuum state of no photons. The
intermediate state |m,1k,) corresponds to the atom in state m and one
photon in mode (k, A). This intermediate state has energy Em + hws which
appears in the denominator in (3.16). Only one-photon intermediate states
appear because A can only connect the vacuum state to such states , and

furthermore only a}n in A contributes to the matrix element in (3.16)
because ay,|vac) = 0. The expression (3.16) for AE, is derived in the
following chapter in both the Schrodinger and Heisenberg pictures.

Since
e (2nhc? /
(m, g, [hkalns vac) = ——= ( oV ) Prmn * €kx» (3.18)
we can write
2me? 1 1 |Pmn € >‘|2
AEn =" Zﬂ:% = _——L_w,,,,. —2 (3.19)
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n

Figure 3.2: Diagrammatic re i i
' presentation of (3.21) in terms of emissi
absorption of virtual photons. ( ) ® of emission and

where hw,m, = En — E,. Using (2.71) and other si i i
et = hgve 'm g ( ) other simple manipulations,

_ 2¢? * dww
AFE, = W;lpmnlz/o —_—

Wpm — W

= B (L) Stoml [
37r me — prrm 0 En — E,m — E . (320)

In these e?(pressions the integrals are to be understood in terms of the
Cauchy principal part.

At the risk of laboring the obvious, we emphasi i
, asize that
the vacuum field. Writing phasize that &f arises from

|
[{m, lkA|ak,\(p ep,)In,vac)? = (n,vaclay, (p - ey, )Im, 1),)

x (m, lk)‘|aL/\(p - ey, )In, vac),
(3.21)
we are led to interpret AE), in terms of an emission process n — m+ « fol-

lowed by the absorption process m++ — n, where v denotes a photon. This

emission and absorption of “virtual photons” is indi : .
in Fi icated
in Figure 3.2. ed diagrammatically

We have ignored the contribution of the interaction (e?/2mc?)A? to
AE,. Since this term does not involve atomic operators, it contributes the
same energy to every state |n, vac),

e?

AE, = (n,vac| AZ|n,vac)

2mc?
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62 ZE (27rhc2)1/2 (21h62)1/2
= 2 1% wi
2me ka ko w k
x (vaclay, )‘,a;‘v‘lvac)ek, A " €ka

e? 27hc? e2h /°° d (3.22)
= — —_) = ww, .
- 2mc? kz ( wiV ) xmcd Jo
A

and therefore it does not affect observable frequency shifts and may be
ignored. This term is indicated diagrammatically ip Figure 33

Both AE, and AE, are seen to be infinite. This is especially 'problepl-
matic for AE,, since this presumably corresponds to the Lamb Sl’?lft, whlc}l
experiment shows to be not infinite but small. It was the resol‘ut.lon of f.hl:
dilemma that “fundamentally changed the character of theoretical physm§
(Dirac, 1989). The first person to calculate a finite valu.e for the L.amb shift
was Bethe (1947), and we now turn our attention to his calculation.

3.5 Bethe’s Mass Renormalization

The energy of a free electron due to its coupling to the: field may bfa obtained
from (3.20) by taking the limit in which all the transition frequencies wnm —

0. Thus ) L\? -
free - 22— i 2/ dE (3.23)
api=-32 (o) Steml" |,

is the expectation value in state n of the operator corresponding to f,he
energy of a free electron due to its coupling to the field. (As noted earlier,

n

Figure 3.3: Diagrammatic representation of (3.22).
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the contribution AFE, is the same for every state, free or bound, and may
be neglected for our purposes.)

Now it is reasonable that the observed level shift for an atom in state
n should be AE,, — AE¢ the difference between the shift in the electron
energy when it is bound and when it is free: '

AE} = AE,— AE;* —~ 7"

20 (1)? o dEE oo %
- 3_‘”(;0.) ;'pm"' [/0 Eﬂ“"Em—E+/0 dE]

2a (1)’ 2 e dE
= 3—7'_ (%) Xm:lpmnl (En - Em)~/0 m .
(3.24)

This expression is still infinite but, unlike (3.20), the divergence is “only”
logarithmic. The subtraction of AET® from AFE, has thus reduced the
divergence from linear to logarithmic. This subtraction was done by Bethe
(1947). He correctly suggested that in a relativistic theory, where AFE,, and
AEfee themselves turn out to diverge only logarithmically, the subtraction
of AETe would produce a finite value for AESP®.

Bethe assumed that the main part of the Lamb shift was due to the
interaction of the electron with vacuum field modes of frequency small
enough to justify a nonrelativistic approach. In this case it is reasonable to

cut off the upper limit of integration in (3.24) by some Ei,,y, which Bethe
took to be mc2. Then

2a (1) me  dE
AEobs SN . 2 _E. /
" 3r (mc) ;IP |*(& ) A —En -

" 20(1 2 \ 2
= 3—7l' (7;5) ; lpmnl (Em — E")logm

ol

(3.25)

for me? >> |Ey, — Eyy|. Since the argument of the logarithm is accordingly
very large, Bethe replaced the logarithm by an average value, independent
of m, as a first approximation:

e 20 (1 ? me?
AE = o (,—,;;) lOgmzIpm,.lz(Em ~E,). (3.26)

Now
S IPmnl(Em — Ea) = Y _(nlplm) - (m|p|n)(Em — En)
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= S (nllp, Hallm) - (m|pin)

m

= —ih(alVV - pln) = iRV, plIn)

= %le(n|V2V|n) = %rﬂ / Briv. (0)2VV (),
(3.27)

where V is the binding potential. (Ha = p?/2m + V) For the Coulomb
potential V = —Ze?[r, we have V2V = 4rZe*6%(r) and

S Ipmal*(Bm — En) = 21h2e2 Z|9n (0)17, (3.28)
e o 402 (B [%n(0)|? log me__ (3.29)
AE" = 3 mc " lEm - Enlavg

This expression already exhibits an important element of truth: the Lamb
shift should be largest for s states, for which | (0)]2 3;& 0. For an s state
with principal quantum number 7, |9 (0)2 = (Z/na,) /= and

8a374 mc?
bs o L 3.30)
AEgs - 37["[1.3 R°° lOg lEm — Eﬂla.vg (

where R, is the Rydberg unit of energy (€2/2a, = 13.6 eV) for inﬁnit'e
puclear mass. Using a numerical estimate of 17.8 Ry for the average excl-

tation energy |En — Emlavg defined by?

2 IPrnl*(Em = B) 108 | = Bl .
lOg lEm - Enlavg = Z rgm |pmn|2(Em — En) } (3 3 )

Bethe obtained for the 2s state of hydrogen a level shift in excellent agree-
ment with experiment: :

AES™ = 1040 MHz. (3.32)

2The sums in this expression include continuum states. In fact t}}e continuum stat?s
make a larger contribution to the average excitation energy than discrete states(.i Tht:
explains why the average excitation energy turns out to be so large compared wi
bound-bound transition frequencies. See H. A. Bethe and E. E. .Salpetu', Quantum
Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), pp. 318~

320.

Bethe’s Mass Renormalization 89

The crux of Bethe’s calculation is the “mass renormalization” implied
by the subtraction of AET® from AE, in (3.24). Recall from Appendix
D that a charged particle has an “electromagnetic mass” ém due to its
own radiation reaction field. The nonrelativistic calculation in Appendix
D gives -

4o

ém = 37rc2/0 dE. (3.33)
As discussed in Chapter 5, the observed electron mass m is my+ ém, where
m, is the “bare mass,” i.e., the contribution to the electron mass that is not
associated with radiation reaction. Although (3.33) is infinite, and ém is
also infinite when calculated relativistically, we might suppose that in some
future, more refined theory, ém will be finite. If we assume furthermore
that ém/m in reality is small, then the kinetic energy of the electron is

p’ p:  _ p> sm ,

2m ~ 2(mo +6m)  2me  2m2F

(3.34)

Now the basic idea behind mass renormalization is this: when we write
p2/2m for the electron kinetic energy in the Schrodinger equation, m is
the observed mass (= 9.1 x 10728 g), which includes ém. But when we
“turn on” the coupling of the electron to the field in our calculations, the
radiation reaction on the electron adds ém to its mass. Since we have
implicitly already accounted for §m in writing the electron mass as m in
the Schrodinger (or Dirac) equation with no coupling to the field, we must
be careful to avoid “double counting” ém. In particular, we should subtract
the “additional” contribution, —(6m/2m?)p?, that we incur after coupling
the electron to the field. That is, we must subtract the self-energy

bm o, da (1 oo 5
~om? (n|p®|n) ,\— P (2m2)/0 dE(n|p®|n)

SR Y N Ty
B 3w \me) < Pmn 0

= ABF (3.35)

from the calculated shift in E, arising from the coupling of the electron to
the radiation field. This is exactly what Bethe did in order to reduce the
order of divergence of AE,.

The idea behind renormalization is attributable to Kramers (Dresden,
1987) and also to Weisskopf (1936). Bethe applied it to the Lamb shift im-
mediately after a conference on Shelter Island, where the Lamb-Retherford
experiments and the theoretical difficulties with infinities in electrodynam-
ics were discussed (Bethe, 1989):
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... I thought that it ought to be possible to get Lamb’s result by
applying the idea of Kramers. So on the train from Shelter Island
... 1 wrote down some . .. equations ... and found out that the effect
on the 2s-state or any state of hydrogen would involve the logarithm
of the energy ... Stupidly or boldly, I just assumed that the higher
energy was mc?, and with this assumption, I got about the right
answer. Of course, ] was afraid that I might have made a mistake
by a factor of 2 ... after all one cannot remember factors of 2 on a
train. So the next morning, as early as I could, I looked for Heitler’s
book in the General Electric library, and found that I had not made a
mistake. Indeed I got a result of about a thousand megacycles which
was about the right answer.

In his Nobel lecture (1966) Feynman called Bethe’s estimate “the most
important discovery in the history of quantum electrodynamics.”

Renormalizability, like Lorentz invariance and gauge invariance, is pres-
ently believed to be required of any fundamental theory of physics. How-
ever, dissatisfaction with renormalization has been expressed at various
times by many physicists, including Dirac (1978), who felt that “This is
just not sensible mathematics. Sensible mathematics involves neglecting a
quantity when it turns out to be small — not neglecting it just because it
is infinitely great and you do not want it

On the other hand, it can be argued that mass renormalization, for
instance, would be necessary to avoid double counting in calculations even
if the electromagnelic mass sm turned out to be finite. It can also be argued
that §m in a more refined theory would turn out to be small, and that mass
differences between the particles 7+ and 7%, or K* and K, etc., are “almost
certainly electromagnetic in origin” (Feynman, 1961).

Discussion of these matters further would take us too far from our
present subject. We shall return to the numerical value of the Lamb shift
later in connection with vacuum polarization, but in the next few sections
we wish to develop a more physical understanding of the dominant (non-
relativistic) contribution to the Lamb shift calculated by Bethe.

3.6 Welton’s Interpretation

Welton (1948) interpreted the Lamb shift as follows. The vacuum field
causes the position of the electron to fluctnate. The fluctuation Ar is
determined by mA¥F = eE,, where E, is the zero-point electric field. If we
make a Fourier decomposition of both E, and Ar, then
Ar, = ———Eou (3.36)
mw

2 ¥
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gives the component of Ar at the frequency w. Thus

(Ar)?) = ——(EZ,), (3:37)

whzereztl;e exl?ectation values are over the vacuum state of the field. Since
'(w /7?¢*)dw is the number of field modes per unit volume in the frequency
interval [w,w + dw], and each mode has a zero-point energy %hw, we have

lhw _w2 dw = 1 2 2 1 2
2 1l'2€3 w = 8_7|'[(E°’w) + (Bo,w)]dw = 4_W(Eo,w)dw (338)

_ 2a(hY?[7am
T ow \me o E’ (3.39)

and

where again a is the fine structure constant and fi/mec is the electron Comp-
ton radius divided by 27.

Now the fluctuation in r causes the potential energy V(r) to fluctuate,

V(r+ Ar) = V(r) + Ar - VV(r) + %(Ar)ZVZV(r) .. (3.40)

for a §pherically symmetric potential, so that an electron in state n should
experience an energy shift with leading term

! 1 2 2
A, = Z((Ar)nlVV()in) = £(AD))4nZe i O)F

_ 8a%7% R * dE

= et B | = (3.41)
for an s state with principal quantum number n. This is infinite, but if we
replace the upper limit of integration by mc? in this nonrelativis’tic model
and the lower limit by Bethe’s average excitation energy, then we recove;
exactly Bethe’s expression (3.30) for the Lamb shift. ’

Note that E’, = 0 for a free electron (V2V = 0), so that there is no need
here to subtract away a free-electron contribution in order to obtain an
observable shift. That is, no mass renormalization is necessary in Welton’s
heuristic approach to the Lamb shift.

The steps leading to (3.41) are the essence of Welton’s interpretation
pf the Lamb shift, and this interpretation is mentioned in many textbooks
in advanced quantum mechanics. Welton’s argument seems to leave little

go;:ibt about the “reality” of the vacuum fluctuations of the electromagnetic
eld.
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3.7 A Feynman Interpretation of the Lamb
Shift

Thus far we have described two ways of thinking about the role of the
vacuum field in the Lamb shift: we can explain the level shift as the result of
emission into and re-absorption from the vacuum of virtual photons (Figure
3.2), or as the result of the fluctuations in the position of an electron due
to the fluctuations in the vacuum electric field. In this section and the next
we descibe two variations on this theme.

The first is a simplification of an argument due originally to Feynman
(1961) (Power 1966). Consider a dilute gas of N atoms per unit volume
in a large box of volume V. Since the allowed wavelengths are fixed by
the dimensions of the box, the effect of the refractive index of the gas is
to change the frequencies wg to Wi /n(wi), where n(wy) is the index at wg.
The change in the zero-point field energy due to the presence of the atoms
is therefore

AE = E (_1__71&)1_ - E .l.hwk =~ E [n(wk) — l]—l-hwk (3.42)
2 n{we) 2
kx kx kx .

for n(wi) = 1. Now n(ws) is given, for a dilute gas of atoms in level n, by®

~ 47N Wmn|dmnl2
n(wg) =1+ 3 Z o2 —wlzc ) (3.43)
m mn

where dyun is the m <= n transition dipole moment. Thus

AE, = Jmh ZwkZ w‘—mn———"ldm"f
kx m

3 wr2nn — Wi
INV . ©  duw?
—3 Em:“"""ldm"l eyl (3.44)

To obtain an observable shift in level n we subtract from this expression
the change in zero-point energy due to N free electrons per unit volume in
the box. This is obtained by ignoring w? , compared with w?in (3.44), i.e.,
by taking a limit of effectively continuous electron energies:

_ 2NV 2 [T

3See, for instance, P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988),
Chapter 7.
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The Thomas-Reiche-Kuhn sum rule,* Wonnldma |2
. . ’ = 3h 2
us to write this free-electron energy as 2o emnfdnn] e/, allows

_ e2h >
A, =(NV)-= /0 duw (3.46)

which is just the vacuum expectation value of the energy (e2/2mc2)A? for

NV . e
there?j::rt?:s. [See equation (3.22).] The observable shift in level n should

2NV o 3
AEP* = - 2 e
" 3nc3 ;wmnldmnl /0 dw[w?nn —w? +]
INV — 5 © g
- — — 2 __ww
3me? £ Wran [ dmn] /o wi,, —w?
2NV 2
- 27 3 2og — ¢
37|'63 - wﬂlﬂ Idm'll lOg IEm _ Eﬂl (347)

when we introduce a high-frequency cutoff mc? /h.
Finally we recall that® |pm,|? = miw? 2 202
— X — 2 2
and write (3.47) in the form ™ o e (momn /el

2c0 1\?
AES™® = (NV)— | — mc?
(NV) 37 (mc) ;(Em - En)lpmnlzlog m , (3.48)

'Whlfih is exactly Bethe’s expresssion (3.25) obtained after mass renormal-
ization when we take NV = 1, i.e., when we let our original box contain
one atom. Note that, as in Welton’s argument and for basically the same
reason, no mass renormalization is required in this approach.

3.8 The Lamb Shift as a Stark Shift

There islyet another interpretation of the “Bethe log.” Consider the energy
W = —gd . E 'associated with a dipole moment d induced by an electric
field E. .ertmg d, = a(w)E, for the Fourier component of the dipole
moment induced by the Fourier component E,, of the field, where a(w) is

4See, for instance, J. J. Sakurai, Ad i i
o, Mon 1076). p. 74 , vanced Quantum Mechanics (Addison—Wesley,
5Ibid., p. 42.

6 .
The factor 1/2 is due to the fact that the dipole moment is induced rather than

permanent. See, for instance, J. D. Jack 1 i i
B e o ackson, Classical Electrodynamics, 2nd ed. (Wiley,
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the polarizability, we have W = —%a(w)Ef, and, if there is a continuous
distribution of field frequencies,

W= —% / a(w)[4rp(w)dw), (3.49)

where p(w) is the spectral energy density of the ﬁgld, E? = 4rp(w)dw. For
an atom in level n, therefore, we expect a level shift

AE, = 27 /ooo dway, (w)p(w) (3.50)

due to an applied field of spectral energy density p(w), vshrhere ap(w) is ths
polarizability for level n and is given by the Kramers—Heisenberg formula,

2 wWmn|dmal?
an(w) = 5%2-:’3”:}—_'—‘07 . (351)
m
For a monochromatic field, equation (3.50) reduces to the standard formula
for the second-order Stark shift produced by an external field. ‘
For an atom in the vacuum we use the spectral energy density po(w) =
hw3/272¢3 of the zero-point field and obtain the level shift

o0 3
2 dww
AE,=-3—3 S :wmﬂldm”|2/0 ek (3.52)

This is identical to equation (3.44) in the case of one atom (NV = lh)

Therefore we can regard the Lamb shift as a Stark shift produced by the

vacuum electromagnetic field. . .
The equivalence of this interpretation of the Lamb shift to that given

in the preceding section follows from the relation

n(w) = 1+ 2rNa(w) (3.53)
between the refractive index and the polarizability for a gas W,l’th n(w) = 1.
These interpretations of the Lamb shift can be “dr.essed up” by re;latmg
a(w) to the real part of the forward scattering amplitude f(w) '[<x w a(wh)]
for a photon of frequency w, but this is hardly necessary to bring out the
point that the Bethe log may be attributed to the coupling of the atom to
the vacuum radiation field.

7See, for instance, A. S. Davydov, Quantum Mechanics (Pergamon Press, Oxford,
1965), pp. 316-321.

Retardation o5

3.9 Retardation

The Bethe log arising from vacuum field fluctuations accounts for all but
a few percent of the 25,/ — 2p;j Lamb shift in hydrogen. The Lamb
shift provides one of the most delicate tests of QED, and various other
effects contributing to it, such as vacuum polarization, finite nuclear mass,
etc., must be accounted for in any detailed comparison with experiment.
However, for a basic understanding of why there is a Lamb shift and for an
estimate of its magnitude in hydrogen, it is sufficient to concentrate on the
Bethe log. For this reason we have discussed various physical interpretations
of this contribution, all of them involving the vacuum electromagnetic field.

It is obviously of interest to determine the effect of higher order correc-
tions to the Bethe log. One correction is to go beyond the dipole approx-
imation in which the factors e**X'X in the field are dropped. This results
in the replacement of (3.19) by

m2 V W — Wr

2 . ik-x -ik-x .
AE, = 2me? 1 ZLZ (nlp - ek, e |m)(mle P - ek, In) ,
ka “E

(3.54)
which, unlike (3.19), is logarithmically divergent without mass renormal-
ization (Au and Feinberg, 1974). We can see this by writing

zp'ekxe

m

(mle-.'kxp ey

Wnm — Wk

ik-x |m)

1Y p - ey, eXXG,|m)(m]|

% e—:kx

in (3.54), where the operator G, = (E, — p?/2m — V — hw;)™!, with
(p?/2m + V)|m) = E,,|m). Then the general identity

KX F(p)e= kX = F(p - 1K) (3.56)

gives

ekXG, ek = (E, - %(p —hk)? — V — hwy]™t . (3.57)
The effect of the retardation, i.e., of not making the dipole approximation,
is then to replace w by w? for large frequencies in the denominator of the
integrand in (3.20). This leads to logarithmic rather than linear divergence.

Physically, the effect of retardation is to give recoil of the electron in
photon emission and absorption. The replacement of p by p — Ak in the
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intermediate electron momenta then reflects the conservation of linear mo-
mentum in the interaction between electrons and photons.

We can aproach the free-particle self-energy v'vith lzetardation includ(?d
by taking E, = p?/2mand V =0in (3.57), and ignoring thezterm k-pin
order to obtain from (3.56) a contribution proportional to p* for small p.
Then (3.54) gives

ome? 1 1 (nl(@-eg,)’In) _ _6m 2 3.58
AEL™ = MV K wr Wy + hw?/2mc? 2m? (nlp*In),  (3.58)
A
where
4e? [ dww 3.59)
bm =33 /0 w + hw?/2mc? ’ (

which is logarithmically divergent as oppo§ed to the linear divergence of
the result (3.33) obtained without retardation. .

Using a momentum representation of Gn (Schw1pger, 1964; see also
Lieber, 1968), Au and Feinberg (1974) have numenca}ly computed the
mass-renormalized shifts AE, — (6m/2m?)(n|p?|n), with AE, and ém
given by (3.54) and (3.59), respectively, for the 2:s and 2p levels of hydrogep
with retardation. Each term diverges logarithmically, ?.nd the difference 1s
finite without any high-frequency cutoff. They obtained AEz, = 931.1
MHz and AE;, —AE;, = 950.3 MHz. (When the k - p term was l‘(ept
in the denominator of (3.58) in the evaluation of AEfee, they obt'a.l'ne.d
AE,, = 1330 MHz and AEys—AEqy = 99(.5.6 MHz) The nonrelatl'\rlstlc
computation of the Lamb shift with retardation included, therefor.e, gives a
finite value, but this value is significantly different from the experimentally
observed Lamb shift (see also Grotch, 1981).

The nonrelativistic theory with retardation as just described, of course,
involves photon frequencies at which nonrelativistic theory breaks down.. In
this sense the theory is inconsistent. However, it does show that retardation
is important in the numerical value of the Larpl? S‘hlft, and furthermore
it provides some insight into why the nonrelativistic, nonn?tarded Bet.he'
log with a high-frequency cutoff works so well (Au and Femberg3 1974):
the dominant contribution to the Bethe log comes from f.requenmes tl.'xa.t
are too small for retardation to be important, while, for high frequenaes,
where Bethe introduced a cutoff, there is an effective cutoff resulting from
retardation. ‘ .

It is worth noting that the AE2,—AE2p separation is convergent.. in .the
nonrelativistic theory with retardation even without mass renormalization.
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3.10 Another Look at the Casimir Force

In Section 2.7 we obtained the Casimir force between two conducting plates
in the conventional way, by calculating the difference between the zero-point
field energies for finite and infinite plate separations. Having interpreted
the Lamb shift in different ways based on vacuum field fluctuations, we now
turn to an alternative interpretation of the Casimir force.

The idea here is that the virtual photons of the vacuum carry linear
momentum %hk; recall equation (2.60). Then the reflections off the plates
of the zero-point field outside the plates act to push the plates together,
while reflections of the field confined between the plates push them apart.
Loosely speaking, there are more field modes outside the plates than inside,
since only certain discrete frequencies are allowed between the plates. The
net effect of the zero-point radiation pressure is then to push the plates
together. We shall now show that the force calculated in this way is exactly
the Casimir force (Milonni, Cook, and Goggin, 1988).

Consider the radiation pressure exerted by a plane wave incident nor-
mally on a plate. This pressure is twice the energy u per unit volume of
the incident field (Section 1.2). If the wave has an angle of incidence 6,
however, the radiation pressure is reduced to P = F/A = 2ucos? f. There
are two factors of cos 8 here because (1) the normal component of the linear
momentum imparted to the plate is proportional to cos 8, and (2) the ele-
ment of area A is increased by (cos#)~! compared with the case of normal
incidence.

Between the plates the modes formed by reflections off the plates obvi-
ously act to push the plates apart. A mode of frequency w contributes a
pressure

2

P= 2(%)(-;—hw)V‘1 cos?f = -27’—“‘}{-2- , (3.60)
where, as usual, k = w/c and V is a quantization volume. A factor 1/2
has been inserted because the zero-point energy of each mode is divided
equally between waves propagating toward or away from each plate. For
large plates, k; and k, take on a continuum of values, whereas k. = n7/d,
where n is a positive integer. Adding the contributions from all modes of
the space between the plates, we have the total outward pressure

he & [ *° (nw/d)?
=S [ k. [ d .
Fow = 773 2 /0 /o TR T (nr/d) (3.61)

on each plate. In writing this expression a factor of 2 has been included to
allow for the two independent polarizations. The replacement of sums by
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integrals over k, and k, brings in a factor (L/7)* = V/x2d, as in Section
2.7.

The field outside the “resonator” formed by the plates has a continuum
of allowed frequencies. These modes obviously act to push the plates to-
gether by reflections off the plates. The total inward pressure exerted by
these modes may be obtained from (3.61) by replacing 3, by (d/7) J dk;:

he [® e bt k2
' = —= 2 . 3.62

Both P, and P, are infinite, but it is only their difference that is phys-
ically meaningful. After some simple algebra we can write this difference
as

7r2hc sl 9 oo dr /oo 2/oo dz
_ =2 = E: L duu = 1.
Pow = Fin = 7 L=1n./o (z+02)'2 Jo o (z+u?)}/?
(3.63)

Application of the Euler-Maclaurin summation formula as in Section 2.7
then leads to the Casimir result

w2he

= —— 3.64
24044 (3.64)

P, out — Pl
for the force per unit area between the plates.

We can therefore regard the Casimir force as a consequence of the radi-
ation pressure associated with the zero-point energy -;—hw per mode of the
field. This interpretation is directly connected to the conventional one (Sec-.
tion 2.7) through the Maxwell stress tensor for the quantized field (Milonni
et al., 1988)8

3.11 Van der Waals Forces

In order to account for observed deviations from the ideal gas law, in 1873
J. D. van der Waals proposed the equation of state

a :
(P+ W)(V -b)=RT (3.65)
for 1 mole of a gas at temperature T. P and V are as usual the pressure

and volume, R is the universal gas constant, and a and b are now called the
van der Waals constants, obtained by fitting (3.65) to experimental data.

8See also A. E. Gonzalez, Physica 131A, 228 (1985).
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Van der Waals interpreted the constant b as the volume excluded by
two atoms. If the atoms were imagined to be spheres of radius r,, then b =
167r3/3. The constant a was associated with an attractive force between
two atoms. Van der Waals later suggested an interaction potential of the
form V(r) = —Ar—le~B", where A and B are constants.

Much later Keesom obtained the potential V(r) = —p?p3/3kTr® for two
polar molecules, i.e., molecules with permanent dipole moments. Here p;
and p; are the dipole moments of the two molecules and V'(r) is obtained as
a consequence of molecular rotations. There is an attractive force because
attractive orientations are statistically favored over repulsive ones.

Debye and others recognized that more general attractive forces must
exist between molecules, since gases of nonpolar molecules have nonvan-
ishing values of the van der Waals constant a. Moreover a temperature-
independent potential was needed. Debye noted that many molecules have
a permanent quadrupole moment, which can induce a dipole moment in a
second molecule, and the resulting dipole—quadrupole force is temperature
independent. Such an “induction force” occurs also if the first molecule has
a permanent dipole moment. However, neither case is sufficiently general
to account for the van der Waals equation of state.

London (1930) employed fourth-order quantum-mechanical perturba-
tion theory to derive the interaction potential®

3hw,a?
T 48
between two identical atoms (or molecules) with transition frequency w, be-
tween the ground and first excited levels, with a the static (zero-frequency)
polarizability. London’s result, which was considered a major accomplish-
ment of the new quantum mechanics, showed that there is a general force of
attraction between two molecules even if neither has a permanent moment;
it is necessary only that a dipole moment can be induced in each molecule,
i.e., that each molecule is polarizable (o # 0). And London’s result, unlike
Keesom’s, is temperature independent.

Since it involves the polarizability, which in turn is related to the re-
fractive index and dispersion [cf. (3.53)}, London’s force is often called the
dispersion force. Dispersion forces, together with the orientation and induc-
tion forces of Keesom and Debye, are now regarded as three general types
of van der Waals forces. In this section we will consider the origin of the
dispersion force between two neutral polarizable particles, and show that
this type of van der Waals force may be attributed to zero-point energy.

V(r)= (3.66)

9Before the work of London, S. C. Wang [Phys. Zs. 28, 663 (1927)] presented
somewhat indirect quantum-mechanical arguments for an r—¢ interaction between two
hydrogen atoms.



100 Some QED Vacuum Effects

In fact London originally proposed such an interpretation. The essence
of the argument is as follows. Consider two identical dipole oscillators of
frequency w, coupled through their near fields. For this system we write
the equations of motion

I+ ngl = Ky, (3'67)
ig+wlzy =Kz, / (3-68)‘

with K = ge?/mr3, ¢ being the dipole-dipole orientation factor, 3(f1-8)(f2-
8) — fi1 - iz, where ji, jiz are unit vectors in the directions of the dipole
moments and s is a unit vector pointing from one dipole to the other. Two
points about these equations are worth noting. First, since atoms that
remain with high probability in their ground states are accurately repre-
sented for many purposes as harmonic oscillators, these equations provide
a reasonable qualitative description of the coupling between two ground-
state atoms.!® Second, we are not assuming permanent dipole moments;
equations (3.67) and (3.68) can be thought of as operator equations, with
the expectation values (z1) = (z2) = 0 implying a vanishing permanent
dipole moment. In fact the only thing of interest for the present discussion
is that the normal mode frequencies of this coupled oscillator system are
given by

wy = W2+ K)Y?. (3.69)

The quantum-mechanical ground-state energy of the system is

hK?
8w3

= %h(w+ +w_) = hw, — (3.70)

to lowest order in K/w?2. This implies an interaction energy

2\ 2 2 2
V()= - (‘16 ) _ _Lhwea” (3.71)

8w3 \ mr3 8ré '

where o = e2/mw? is the classical static polarizability. Now if we use the
fact that a quantum-mechanical evaluation of ¢2 gives an average value of
2, and multiply by 3 to account for the three-dimensionality of the atoms,
then (3.71) yields V(r) = —3hw,a?/4r®, which is London’s result (3.66).11

10Gee, for instance, M. Cray, M.-L. Shih, and P. W. Milonni, Am. J. Phys. 50, 1016
(1982).

11f the two induced dipoles are parallel to each other and perpendicular to the axis
joining them, g% = 1, whereas if they are parallel and aligned along the axis, g2 = 4.
The orientationally averaged value of g2 is then (2/3)(1) + (1/3)(4) = 2. See also P. W.
Milonni and P. L. Knight, Phys. Rev. A10, 1096 (1974); A11, 1090 (1975).
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We saw in Section 2.6 that the vacuum field is required to maintain
the‘ commutation relation, and therefore the zero-point energy, of a dipole
oscillator. This suggests that the r—% van der Waals interaction might be
attributed physically to the fluctuating vacuum electromagnetic field. That
this is so may be seen from the following argument.

As in Section 3.8 we begin with the formula for the Stark shift of

an atomic energy level, but now without the assumption that the field
is isotropic:

1
Wa = —§§aA(wk)E]2(A(xA,t) (3.72)
A
for an atom A located at x, with polarizability aa(w). The total field in

mode (k, ) acting on A is assumed to be the zero-point field plus the field
at A produced by a second atom B:

Ek'\(xA,t) = Eo,k)\(x-‘\’t) + EB,kA(xA’ t). (3.73)
Then the part of W, due to the interaction between the two atoms is
1
Wiap = -3 gaA(wk)[Eo,k,\(xA,t) ‘Ep ka(Xa, 1)
A
+ EB,k)\(xA’t) . Eo,kx(xA’t)]' (3.74)

This is the only part of W4 that will involve the distance r between the
atoms. We have seen in Section 3.8 that E2 k (xa,t), for instance, will
contribute to the Lamb shift in atom A. ot ’
Now actually the right side of (3.74) should be a vacuum expectation
value involving field operators. Let us write the operator E_ 1, as E® +

E'7) | where e
ok’
+) . 2777160]‘; 1/2 —iw K-
Eo,k,\(xA’t) =1 ( % ) ap, (0)e™*“* e k Xaep, (3.75)
and
=) _ (b o
Eo,k,\(xA’t) = - ( 7 ) aL/\(O)e rte—ik Xrep, (3.76)

are called the positive- and negative-frequency parts, respectively, of E_ ),
3 o, .

y (+) -
Since Eo'kA(xA,t)lvac) = (vaclE(()']zA(xA,t) =0, (3.74) is equivalent to

1
Was = -3 %:(x,\(wk) [(Eg&:/\(XA,t) 'EB,kA(xA’t))
A
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+ (Ep sr (xar8) - EG), (e, 1)) (3.77)

when a vacuum expectation value is taken.

The field from atom B has the same form as the classical field of an
electric dipole pp = figps(t), where as before fig is the unit vector in the
direction of pg:

En(xaf) = —lin— (s - S)sl=gin(t = ) +B(An - 8)s = o]
 (S5pa(t — 2+ —im(t = D) (3.78)

Here s is the unit vector pointing from atom B to atom A and now Ep
and pp are quantum-mechanical operators.'? The dipole moment pp has
zero expectation value for an atom in a stationary state (the ground state
in the situation of interest here), but this does not of course mean that the
dipole moment of atom B is identically zero. Rather, this dipole moment
fluctuates about zero mean due to the influence of the vacuum field at xp:

pe(t) = 3 en(w) [ngﬁx(xg, t)+EG) (xs, t)] . (3.79)
ka
Since Efﬁlﬂvac) = 0, only the negative-frequency (creation) part of

EB,kA (xB,1), determined by Ef:_lz A(xB,t), will contribute to the first term

in brackets in (3.77). This is easily read off from (3.78) and (3.79):

— —ikr 1
+ [3(ex, - 5)s — ekl

1 i =)

[(kr)3 + (kr)z]} Eo,kx(xB’t)’ (3.80)
where Ef:k))‘(xg,t) = ey, -Egy—lg)\(xg,t). Similarly, only Egl)“(x,\,t) will
contribute to the second term in brackets in (3.77). Then, using the fact
that

(vaclagy (0)al (@)Ivac) = 1, (3.81)
we obtain from (3.77) the expression
27h N
Wag = V()= —-—V—Rez kawkaA(wk)aB(wk)e"'k’e'k r
ka

12Gee Chapter 4 for a discussion of the correspondence between classical and quantum
solutions of the Maxwell equations.
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x {[1 — (e, .s)Z]ZI; +3(ex, -5)* - 1][@ + @1} :

(3.82)

Note that this expression is symmetric in A and B, as it should be.

N?w as usual Ek,\ — (V/8x3) [dkk® Y, [dQy, and the sum over
polarnz'atlons p!us the integration over solid angles about k are easily carried
out, using the identity > ,(ey, -s)?=1— (k - s)?, with k = k/k:

Ay KT — (e -s2i ep, s)° — ! ‘
5 [ e {1 = ey + 89 = g + g}

- d eikar L .8 _];_ — k 2 1 :
/Qk {[1+(k )2]kr+[1 3(k-s) ][W+-(71")_2]}'

(3.83)

This integral is easily performed by choosing the polar (z) axis to lie along
s:

1 2% L] .
8_7r/0 d¢/o dﬂsmﬂe'““’[(l+coszﬂ)%+(1—3c0320)

1 ] sinz  isi i ]
1 o Inr cosx 2sinx 3Jicosz
x(55+ 29l = +

z? z3 z3 P Y
3isinz 3coszx 3Jsinz
po + o ,  (3.84)
with £ = kr. Then (3.82) gives
_h o0 wr
V(r)=-— /0 dwwbop (w)ap(w)G (7) : (3.85)
_sin2x 2cos2z 5sin2 6 i
G(z) = sin _ 5sin2z  6cos 2r 3sin2z
(=) — p por — + - (3.86)

. For small r the dominant contribution to V(r) comes from the last term
in (3.86):
h 3c®
T meS rS
3h [ . N
—m/o duap (iu)ap(iu)e~2ur/e

3h

= -2 (%) E S omspmldnalldnl
m p

V(r)

iR

/ dwap(w)ap(w)sin 2ur
0 c

5 /00 due—Zur/c
), o)L (3:87)
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where we have used equation (3.51) for the polarizability of an atom in state
n and assumed for simplicity that the two atoms are identical. The change
in the path of integration implied by the second line of (3.87), where we
replace an integral along the real axis by an integral along the imaginary
axis plus a (vanishing) contribution along a large quarter-circle, assumes
that we do not need to concern ourselves with poles of a(w). This is in
fact the case because, at a resonance frequency Wmn, the real part of the
polarizability is found to vanish when the m «— n transition linewidth
is accounted for.}3 If r — 0, or more precisely if r << ¢/|wmn| for all
transitions m «— n, we may replace e=2ur/¢ by 1 in (3.87), and this gives
the r—% form of the van der Waals potential derived by London. In fact
if we assume furthermore that one particular transition m < n makes a
dominant contribution to (3.87), then

3h (2 2 oo du hwoa?
o~ — 2 4 = - 2 .
V(r)= (3h) wal|d| /0 W+ ) P (3.88)

wrs

where w, and d are respectively the transition frequency and dipole matrix
element of this transition and a = (2/3h)|d|%/w, is the static (w = 0)
polarizability of a ground-state atom in the two-state approximation in
which the one transition is assumed to be dominant. This result is exactly
that derived by London.

However, the r~¢ van der Waals potential does not apply in the “re-
tarded” regime of large interatomic separations. In a study of the stabil-
ity of certain (lyophobic) colloidal systems, Verwey and Overbeek (1948)
found that the interatomic potential must fall off faster than r—% at large
distances in order for theory and experiment to be consistent. They sug-
gested that at large atomic separations — that is, at separations large
compared with atomic transition wavelengths — the London theory must
be modified to account for retardation. Such a modification was worked out
by Casimir and Polder in 1948. They derived an expression equivalent to
(3.85) and showed that, for large r, V(r) o r~7. The simplest way to obtain
the Casimir—Polder result is to argue that for distances large enough for
retardation to be important, (3.85) may effectively be replaced by'4

B o0 '
V()= ~—aran /0 duo®G (), (3.89)

13Gee, for instance, P. W. Milonni and J. H. Eberly, Lasers, Chapter 3.

14 This may be justified quantitatively by making the same change in the path of inte-
gration in (3.85) as in (3.87). Then it can be seen that the zero-frequency polarizability
makes the dominant contribution for |wmnlr/c >> 1,i.e., when retardation is important.
This condition is roughly equivalent to r >> 137ao, where a, is the Bohr radius.

Van der Waals Forces 105

wht?re ap,ap are the static polarizabilities. The integral may be evaluated
by introducing a cutoff function e~*“"/¢ A > 0, and taking the limit A — 0
after integrating. For instance,

o .

2wr/c L

dwt SR/ _ & 4g

/0 (wr /o) 7/, duu”® sin 2u
7 oo

ch . “Au 48¢”
— ;;11_1{(1) A duute™ ¥ sin 2u = r: .
(3.90)
We find in this limit, for large r,
~ 23hc
V(r) = - —7aaas, (3.91)

which is the Casimir—Polder result.

In either the retarded (Casimir-Polder) or nonretarded (London) limit
the van der Waals interaction may be regarded as a consequence of the
fluctuating vacuum electromagnetic field. Our derivation leading to (3.82)
shows that the van der Waals interaction results from the fact that

(vac|Ec(,:*i(),\(xA,t),~Ec(>’—k)A(xB,t)jlvac) #0. (3.92)

In other words, the van der Waals interaction results from correlations of
the vacuum field over distances on the order of |[xpo — xg| = r. In more
physical terms, the vacuum field induces fluctuating dipole moments in
the two atoms, and the dipole—dipole interaction of these zero-mean but
correlated moments is the van der Waals interaction.

. At the conclusion of their paper Casimir and Polder argued that the
mmp}e form of (3.91) might allow it to be derived “by more elementary
considerations” than the perturbation-theoretic approach they employed
and that “This would be desirable since it would also give a more physical
background to our result, a result which in our opinion is rather remarkable
So far we have not been able to find such a simple argument.” Not loné
th(?reafter Casimir (1949) gave a derivation based on the fluctuating zero-
point field, and the derivation given in this section follows closely the spirit

of hli(s insightful analysis.!® The following section is also based on Casimir’s
work.

15Gee also Boyer (1972,1980) and Renne (1971).
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3.12 Force on an Atom near a Conducting
Wall

Casimir and Polder (1948) also considered a simpler_ problerp in their study
of long-range, retarded interactions; namely, the 1pteractlon between an
atom and a perfectly conducting wall. For short distances .d of the atom
from the wall the attractive potential V(d) may.be ob'taxned from the
dipole-dipoleole interaction of the atom with its image 1n t:he wall, and
varies as d—3. For large d, however, V(d) falls off as d=%; asin ?;he case of
the van der Waals force, the effect of retardation is to weaken the interaction
by a factor oc d71. o

’ Consider first an atom located at the point R = (L/ 2, L/2,d) inside the
rectangular parallelepiped described by the mode functions (2.91)—(2.93).

The energy (3.72) in this case is

~2 > rhw) Ak, (R)* =
ka

1 EE! )
— :470 Z(thw)[eim cos? §k,L sin® EkyL sin’k,d
kx

1 1, . .,
+ efuy sin’ §k,L cos? §kyLsm k,d
. 21 o1 9
+ efuz sin? -2-ka sin? Ek”L cos® k,d]

27ha Ly \ ,
- - ( % )§Wk[(eixz+ef(,\y)81n k.d + ef,, ] cos” k.d,
A

(3.93)

where, as in the preceding section, we have replaced the polarizability a(w)
by the static polarizability a(w) = a, arguing that only the value of a(w)
at w = 0 contributes at large distances d of the atom frorq one of the
(conducting) walls of the parallelepiped. In the last expression we have
also replaced sin® %kyL, cos? %kyL, etc. by their average value, 1 /2.' We
now define the potential V(d) describing the interaction f’f the atom with a
conducting wall as the difference between (3.93) for d finite and for d — oo.
In the latter limit we replace sin? k,d, cos® k,d by 1/2. Thus

1

3 in2 =

V@ = - (2”v0> > wrlef. + chry ~ ol kxd = 3]
ka
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wha
(—V ) %:wk cos 2k,d2’\:[eih + eiAy - efuz]

Tha

= (7) Zk:w,, cos 2k, d(2k2/k?)

2rha\ V 3, k2
= (T) m/d kwﬁ COS2kzd
(o;_hc) / dkk® / df sin 8 cos® 8 cos(2kd cos §)

T/ Jo 0

_ (a_hg)/ dkk® (sm2kd + 2cos2kd  2sin 2kd) '
0

" 2kd 4k2d? 8k3d3
(3.94)

Evaluating the integral using the procedure exemplified by (3.90), we obtain
the Casimir-Polder result

(3.95)

In Chapter 8 we discuss experimental evidence for the Casimir—Polder force.

3.13 The Magnetic Moment of the Electron

In order to explain the spectra of atoms in magnetic fields, Uhlenbeck
and Goudsmit (1926) postulated that the electron has an intrinsic (spin)
angular momentum %/2 and a magnetic dipole moment eh/2mc = u,, the
Bohr magneton. Both properties of the electron were later found by Dirac
(1928) to be consequences of relativistically invariant quantum mechanics.

Recall that a curent loop enclosing a plane area A has a magnetic dipole
moment p = IA/e, where I is the current. For a charge ¢ moving in a
circular orbit of radius r, p = (7r2?)(ev)/c = (e/2mc) L, where v and L are,
respectively, the orbital frequency and angular momentum. Therefore the
gyromagnetic ratio p/L = e/2mec. For the electron magnetic dipole moment
and spin angular momentum, however, u,/L, = po/(h/2) = 2(e/2mc).
That is, the Landé g-factor for electron spin is 2, as predicted by the Dirac
theory without coupling of the electron to the radiation field.

As in the case of the Lamb shift, radiative corrections give small depar-
tures from this prediction. Just prior to the first accurate measurements
by Kusch et al. (see Kusch and Foley, 1948), Schwinger (1948) calculated

for the “anomaly” (g — 2)/2 the value a/27 = .00116; the experimentalists
reported a value .00119 £ .00005.
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And like the Lamb shift, the anomalous moment of the electron provides
one of the most sensitive tests of QED. Recent experiments by Dehmelt et
al.16 give a value of (¢—2)/2 more accurate than all previous measurements
by a factor of nearly 1000:

-2
5= = .001159652188(4) - (3.96)
A QED calculation up to fourth order in the fine—structure constant o
yields (Kinoshita, 1989)
-2
2_2— = .001159652192(74) . (3.97)
Here the theoretical “error” is due mainly to the uncertainty in the fine-
structure constant. Such a comparison of theory and experiment explains
the cliché that QED is “the best theory we have!”

As in our discussion of the Lamb shift, we will focus our attention here
on the nonrelativistic theory of the anomalous moment of the electron.
state

From the interaction Hamiltonian —(eh/2mc)o - B describing the cou-
pling of electron spin to a magnetic field B, and the commutation relations
for the Pauli spin—1/2 operators 03,0y, 0;, We obtain the Heisenberg equa-
tion of motion

=—Bxo (3.98)

for o = (0z,04,0:). HB=0,0 is constant in time. However, in QED B
is an operator which, like E, has zero expectation value but nonvanishing
variance in the vacuum state of the field. Thus, for an electron in free space,

do ie ke —iwxt ik iwet —iK-
& T me Z ( weV ) [agx(0)e st GLA(O)C =ik ]
kx
x (k X ey, ) X a(t), (3.99)

where we have used equation (2.57). In writing this equation we are ignoring
the part of the magnetic field that depends on &. That is, we are including
the effect of the vacuum B field, but not the radiation reaction B field.

In the lowest order of approximation we use o(t) = a(0), the zero-
coupling solution, on the right side of (3.99). Then

e onhic2\ /% 1 —iwnt ik
o(t) = o0)- }T{c_z: ( wiV ) w—k.[akx(o)c el
k»

16See Dehmelt (1990) and references therein, and Chapter 6, where the experiments
are briefly described.
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+a} (O e E Tk x ey, ) x0(0);  (3.100)

where in the second term we ignore a contribution from the artificial switch-
on at t = 0 of the interaction. Using the vacuum expectation values

(a1r 0agn (0)) = (ak, (O)ag,n,(0)) = 0 and (ay,al, ., (0)) = 6 1 oa,

we obtain
(o = (=)’ Xk: (%?53) w—lz Sl eg) x o @), (3101
with Ag = o(t) — 0(0). Now
;[(k x eg,) x 0(0)) = ;[“(”(0) -eky) — ek, (k - o(0)))?
=k ;(0(0) cep,)” + (k- 0(0)* (1)
>

£26(0) - (k- 0(0))? + 2(k - 0(0))*
k262(0) + (k . 6(0))2 , (3102)

and the integration over all solid angles about k of this expression is

/ A [+ (k-0(0))") = 4nk0%(0)+ 70%(0) = 2" K207(0) . (3.103)

The replacement Y_) — (V/8x%) [ dkk? [ dQy in (3.101) then yields

(Ac?) ,_V4_a<h ? kb 22 (RK 2

(62(0)) ~ 37 \mec / T3 (m_c) (3.104)
whep, in th?s nonrelativistic approach, we introduce an upper limit K in
the integration over k = w/c in order to avoid a divergence.

In the absence of any coupling to the vacuum magnetic field, the electron

spin has a fixed direction. Following Welton (1948), we define the mean-
square fluctuation angle

s _ (A0?) 20 (RK\®
(A0?) = &0y " 3 (%) (3.105)

and consider the expectation value

eh eh
— —(0) Bexr = 5 (0)|Bext cos 8 (3.106)
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of the potential energy of the spin in an external magnetic field, where 0 is
the angle between ¢ and the direction of Bex:. The effect of the fluctuating
vacuum B field is to replace cos @ by

(cos(6 + AB)) = cosb [1 - %(A92)] = cosf [1 - ga;r- (EK) 2] , (3.107)

me
so that
2
eh eh a H{_ 108
-5 (6) - Bext — —2mc|(a')|Bext [l ~ 3. (mc , (3.108)
or, in effect, )
b eh i o (f'ﬁ) . (3.109)
2me 2me 3 \ \me
This implies ,
9=-2__¢o (&) (3.110)
2 3r \me

to first order in o. ‘ ‘
The problem with this result is that it has the wrong sign: .experlmt.ent
shows that (g — 2)/2 is positive. We can rectify this situation starting
from the observation that radiation reaction has been ignored. .Although
it turns out that radiation reaction does not affect the potential energy
—(eh/2mc)e - B to first order in a, it does contribute to t:he‘electron‘matss
at this order [Equation (3.33)]. Since we have left out rad}atlon reaction in
the calculation leading to (3.109), the mass in that expression must 'fxctually
be the bare mass m,. What is measured experimentally, of course, 1nvolv§s
the observed mass m = m, + ém. Therefore we should express (3.109) in
terms of the observed mass. This is accomplished by the replacement

eh a (RK\? eh (mo + 6m> a (ﬁK)2
L - = (= - (=Y 1= 3= (e
2mec 3 (mc) 2me m, T \ mc

~ e (h_K) [Hﬁm]
= 2me { “ 3x \me m
- ) )
_ b | _ (kK [1+ az(hKc)]
2me ] 3r \ mc 3rmc
o B [} da(BK __‘L(E’i)z
~ 2mec i + T \ me 37 \ mc '

(3.111)
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where we have used (3.33) with a cutoff £ = hAKc in the upper limit of
integration. This implies

g—2 _4a (RK\ o (RK)’
2 - 37 (mc) 3 (mc (3.112)

which is positive for any cutoff K < 4mc/h. Thus the predicted anomaly
in the nonrelativistic theory is positive for all cutoffs for which the nonrel-
ativistic theory is sensible. The choice K = 0.42mc/h yields (g — 2)/2 =
a/2x, which is the relativistic QED result to first order in a (Grotch and
Kazes, 1977).

We conclude therefore that, as in spontaneous emission, both vacuum
field fluctuations and radiation reaction are important for the anomalous
magnetic moment of the electron (Grotch and Kazes, 1977; Dupont-Roc,
Fabre, and Cohen-Tannoudji, 1978).

However, the reader is warned not to take these calculations too seri-
ously, for the result (¢ — 2)/2 = a/2n could be obtained by retaining only
the first (radiation reaction) term in (3.112) and choosing K = 3mc/8h.
It should also be noted that the solution K 2 0.42mc/h of (3.112) with
(9 —2)/2 = a/2x is not unique.

3.14 Summary

We have shown in this chapter how some basic QED effects may be under-
stood physically as consequences of the fluctuating vacuum electromagnetic
field. These effects include such commonplace phenomena as spontaneous
emission and van der Waals forces and also the Lamb shift and the anoma-
lous moment of the electron, which provide the most important tests of
QED. Consideration of these vacuum effects leads us to the concept of
renormalization as a means of obtaining finite results from otherwise infi-
nite quantitites. Vacuum fluctuations and renormalization are two of the
most important features of modern physics.

It is hoped that this chapter has convinced (or reminded) the reader
that the vacuum — or the electromagnetic vacuum, at least — is a quantum
state with observable physical consequences.

These physical explanations of various QED vacuum effects have con-
siderable esthetic appeal and seem to offer compelling evidence for the “re-
ality” of vacuum field fluctuations. And yet the vacuum field fluctuations
are not the only physical basis for understanding these phenomena. There
s another basis — source fields — upon which we can construct physical
interpretations of QED vacuum effects. This point is pursued further in
the following chapters.
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Chapter 4

Nonrelativistic Theory of
Atoms in a Vacuum

Wl}l(-i*nﬁyou follow two separate chains of thought, Watson

you will find some point of intersection which sh I(i i

mate the truth. PR AP

— Sherlock Holmes, “The Disappearance of Lady Frances Carfax”
Arthur Conan Doyle

4.1 Introduction

In the pre.ceding chapter we discussed various effects of the vacuum elec-
tromagnetic field on atoms, but thus far we have not formulated the theor

of the atom—field interaction in any systematic way. One purpose of thi);
chaptf':r is to formulate the nonrelativistic QED theory of atom-field in-
terac.tlc.ms, beginning with the Coulomb-gauge Hamiltonian for the system
consisting of an electron and the electromagnetic field. In so doing we shall
see how v.arious QED vacuum effects can be thought of alternatively in
tem?s of elther'vacuum field fluctuations or radiation reaction. The differ-
ZI:Z ;r:::izrr;;:ftatlons have to do with the way certain commuting operators

4.2 The Hamiltonian

According 'to classic.al mechanics a system of particles is characterized by
a Lagrangian function L(q,4,t) of the coordinates, velocities, and time.

e & »
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This function governs the time evolution of the sy§tem through the prin-
ciple of least action: the evolution from t; to ty is such that the action

g L(g,q,t)dt is minimized (or, more precisely, ?s an extremum).. The fact
tlt;at L does not depend on § or higher deri\"atlves of the coot.dmat:es rie—
flects the empirical law that the time evolution of the system 1s uniquely

determined by the coordinates and velocities at a given time. The principle
of least action implies

4 (L) 2 wy
dt \ Oqx Aqx

for each coordinate g. . .
For a point particle of mass m and charge e in an electromagnetic field

with scalar and vector potentials ¢ and A, a suitable Lagrangian is
= %mv2 —ed+ -ec-A ‘v (4.2)

That is, we obtain from (4.1) and this Lagrangian the correct (nonrelativis-

tic) equation of motion

mx = ¢E + ~v x B, (4.3)
C
where E= —V¢ —c 10A/0t,B=V x A,v= X.
From (4.1),
] BL d qu

dL OL da _f’iiq_k] - [_d_ (3_L) gy 0L d (_)]
i ; [6qk dt T B dt 2:4 7 \5qe ) @t T o at \at

d . OL 44)

(’ﬁ;q}c B4

or dH/dt = 0, where the Hamiltonian
. OL . 45)
= —-L=) prix—L (4.
H Zk: 9k T ;

and p; = OL/q: is the momentum conjugate to gk . For the example of
a particle in a field we obtain from (4.2) the canonical momentum p =
mv + eA/c and the Hamiltonian

1
H = p-v—%mv2+e¢—%A-v=-2-mv2+e¢

SL(p - ZA) + 9. (4.6)
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The Hamiltonian is to be expressed as a function of the coordinates ¢;
and the momenta p;, as in the second line of (4.6). As such, it governs the
time evolution of the coordinates and momenta via the Hamilton equations
of motion ¢, = OH /Op;,pr = —8H /3qy. Thus, for the Hamiltonian (4.6),

. 1 e
x=—(p—-A), (4.7)
p= %[V x B+ (v-V)A]—eVe, (4.8)
or
. . € aA e(')A e
mx. = P—7 W"‘(V‘V)A] ——-C'E-—ev¢+-c-va
= ¢E+-vxB. (49)

where we have used the fact that dA /dt = 0A /0t +(v-V)A (recall Section
2.6).

The canonical momentum p = mv + eA/c for a charged particle in a
field is the “kinetic” momentum mv plus the momentum eA./c. To better
appreciate this famous result, note that if ¢ = 0 and a spatially uniform vec-
tor potential is suddenly switched on, then according to (4.9) mv changes
to mv — eA/c, while p = mv + eA/c is unchanged. In this example x is a
cyclic coordinate (H is independent of x) and so its conjugate momentum is
conserved. This conserved momentum is p, not mv. The particle’s kinetic
energy remains -%mvz, of course, and this becomes (p — eA/c)?/2m when
expressed in terms of the canonical momentum.

Knowing the Newton equation of motion (4.9), we usually have no prac-
tical need in classical electrodynamics for the Hamiltonian. The Hamilto-
nian takes on fundamental importance, however, when we go over into
quantum theory and work with the Schrédinger equation, thdy/dt = Hvy,
to calculate transition probabilities, energy levels, etc. When the field is
quantized, and not simply a classically prescribed function of space and
time, we must also include field variables in the specification of the state
vector |¢) for the combined particle-field system. In particular, we must
include the contribution of the field to the total Hamiltonian.

The Hamiltonian for the classical electromagnetic field has already been
employed in Chapter 2 [Equation (2.29)]. The Hamiltonian for the system
of a charged particle plus the electromagnetic field is obtained simply by
adding the field Hamiltonian to imv? = (p — eA/c)?/2m :

—_1_ a2 1 3 2 2
H = 2m(l’ cA) + 81r/d r(E* + B?). (4.10)
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Note that the term e¢ appearing in (4.6) seems to be missing here. We

now turn to this point. . '

Recall first the Helmholtz theorem (Appendix F) stating that any fecto“r
field E may be divided into transverse and longitudinal parts: E = E +E ,
where V-EL = 0 and V x El = 0. In the Coulomb gauge this division 1s

obvious: E+ = —c"10A/dt, El = —V4, since V- A = 0. Then

/ drE? = / Br(EL2+ENI?) = / &PrEt? + / &Br(Ve)?, (411)
since [d3rE* - El =0, and

/ d3r(V¢)? = / d&®rv - (V) — / d3r¢Vi¢ = 4n / &Erps,  (4.12)

since V2¢ = —4mp in the Coulomb gauge. Thus, for a system of N point
charges,

N X 1
1 Giay }_/ds +_/d3r EL? 4+ BY), (4.13)
H=) g (Pim TAD 3 [ ot g [ 4

where A; is the vector potential at the position r; of the ith particle and

N
p= z e;63(r — r;) (4.14)

i=1

is the charge density. Furthermore
darlp(r,’t) 15
$(r,t) = / vl (4.15)

in the Coulomb gauge, and so

1 plr, )p(r',t)
% / Erp(r,)é(rt) = 3 ] &r / e e—r|
_ _6i€ (4.16)
2

4 |r; — r;

if we drop the infinite Coulomb interaction of each particle with itself.
Therefore

N . e 1
1 &y _&?;__J,_/dar EL? 4+ B?). (4.17)
He @ A LR e )

|r; — r;]
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Suppose, for instance, that all but one of the particles have such large
masses that they are approximately fixed in position. Then the Hamiltonian
describing the dynamics of the system may be approximated by

1 e 1
H=——(p—2A)? 3,.(EL2 4 B2 '
3 (p - ) +e¢+87r/d r(E-“ + B?), (4.18)

where e and m are the charge and mass of the one particle that is free
to move, and ¢ is the scalar potential at this particle due to the other
N — 1 fixed charges. This Hamiltonian is just (4.6) plus the Hamilto-
nian associated with the transverse electromagnetic field. Unlike (4.6), this

Hamiltonian determines the time evolution for both the particle and the
field.

4.3 Dipole Approximation

Consider now a single bound electron with binding potential energy V(x) =
ed(x). Suppose that the distances over which the bound electron can move
in this potential are small compared with the wavelength of any field with
which the electron undergoes a significant interaction. Then it is convenient
to make the electric dipole approzimation in which spatial variations of A
are ignored in the interaction —(e/mc)A - p + (e2/2mc?)A? appearing in
the Hamiltonian (4.18):

e2 2, 1
2me? AT+ 8x

2
P e
H o + V(x) ch p+

/ &#r(EY? +B?), (4.19)
where now A is the vector potential evaluated at a fixed position, e.g., at
the center of the region over which the electron is free to move classically.
For an electron in the hydrogen atom, the dipole approximation is accurate
for wavelengths large compared with the Bohr radius. In this case we may
take A to be the vector potential at the nucleus.

The classical equations of motion following from (4.19) are

. 1 e

X = —p-——A, (4.20)

p = -VV(x), (4.21)
or

mx = —VV(x) 4 eE, (4.22)

where E is evaluated at x = 0. This is the type of equation used to describe
a bound electron in the preceding chapters.
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In this approximation the electron and nucleus in an atom form a point
electric dipole. Note that there is no v x B force in the electric dipole

approximation.
Recall that the principle of least action allows us to add any time deriva-

tive (d/dt)S(g,t) to the Lagrangian without affecting equations of motion.
If in the electric dipole approximation we use S = —(e/c)A - x, then the
Lagrangian (4.2) is changed to

L' = L—EA-x—EA-vzlmvz—e<f>—EA‘x
c c 2 c
- %mvz—ed)—}-ex-E'L, (4.23)

and the Hamiltonian (4.19) is transformed to the equivalent Hamiltonian
p’ 1
=2 tvx) -—ex Et+— / &Br(E? + BY), (4.24)
2m 8w

where now p = mv is the momentum conjugate to x. This Hamiltonian
leads trivially to the same equation (4.22) as does H.

4.4 Quantization

The quantum-mechanical theory of the system consisting of an electron
and the electromagnetic field begins with the replacement of the classi-
cal Hamiltonian with the quantum-mechanical Hamiltonian. That is, we
replace the classical variables p,x,A,EL, and B by the corresponding
quantum-mechanical operators. A system of charged particles plus the field
is described similarly by the quantized version of the Hamiltonian (4.17).
Note that in the Coulomb gauge in which we are working it is sufficient
to quantize only the transverse electromagnetic field. The longitudinal field
energy is replaced by instantaneous Coulomb interactions among particles,
the second term in (4.17).

We will work with the quantized version of the electric dipole Hamilto-
nian (4.19) for a single bound electron:

e A ¥
H = Hatom+ Hried — = Z eV [aky + oy, P - ek
kx
e’ 2mhc? 1 \Y? 1
* Tt > ( % > (wkwi) [agx + 9,

ka kea

x [ak’A’ + ale/]ekA ! ekl,\l ’ (425)
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where Haeom = p2/2m + V(x) is the Hamiltonia .
nd b _
turbed bound electron (the “atom”), escribing the unper

S 1
HFiela = Y hwk(aLAak,\ +3) (4.26)
kx

is the Hamiltonian for the transverse electromagnetic field, and a a)r

are the annihilation and creation operators for the field mc,)de (k l)\(;‘, lfl);
(4.25) we.have used equation (2.52) for the quantized vector p;ten;cial
This Hamiltonian describes the atom—field system in free space, i.e., in th(;
absence of any matter except for the atom. It differs from t’he‘ c‘iassical

Hamiltonian (4.19) in that the atomic a i
milte . nd field variables ar
acting in a Hilbert space. e now operators

Transformation of Hamiltonian

The transfo.rma.t‘ion that takes us classically from the form (4.19) of the
dipole 'Hamlltoman to the form (4.24) is effected quantum mechanically by
the unitary operator (Power and Zienau, 1959)

_ _—iS/h _ _ie A ke
U = e i5/h = gieX-Aln (4.27)

in the Schrodinger picture (where x and A are ti 1
th ime independent). T
writing |y} = Ul¢), we have pendent). “Thus,

. 0 -
zhahp) = ZhUEEId’) = Hly) = HU|¢), (4.28)

or
L0
ih=-1¢) = utHU|6) =-H'|9). (4.29)

This is the Schrodinger e 1
quation for the transformed state vect
transformed Hamiltonian is vector [6). The

r_ 1 e
H = %U (p- ;A)zU + V(%) + Ut HpiaaU. (4.30)
From the general operator identity
Ap —A _ 1
e”Be * = B+ [A,B] + —2—![A, [A,Bl]+... (4.31)

it follows that UtpU = p + (e/c)A and

. p2 1
H' = o=+ V(x)+ o~ / d-”r132(m)+8i1r / BriUt B ()U(x)]2. (4.32)

2m
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To evaluate the last term we note first that
[Ai(r), Ef ()] = —4mihes(r — r'), (4.33)

where 6,4; is the transverse delta function tensor defined by (Appendix F)

1\? [ . kikj \ ikr
6;5(1-) = (5;) /d k (6.'1' - _k2 [

2 1 3rirj
= §5‘.].53(]:) ~ Tnrd (6,']' -3 ) . (434)
6,-lj (r) has the property
Fir) = / P85 (e — ) F (), (4.35)

i.e., it gives by integration the transverse part of a vector field F(r). We
can similarly define a longitudinal delta function:

1\° s kikj kr
1 1 3rir;
= -56.'_,'(1‘) + T (&'j -2 ) ) (4.36)
such that
Fl(r) = / a3l (e = ) F3 (). (4.37)

The commutator (4.33) follows easily from the same sort of manipulations

as in Section 2.8. '
Next we use (4.31) and (4.33) to obtain

Ut ) EL (1)U (x) = Ef (x) — 4mezi6i5(r) (4.38)
and
/ St B @UE? = / BrEL2(r) — 87ex - EL(0)

+ 1672 / d&rPt(r)?, (4.39)

where P(r) = exé%(r) is the polarization density associatf:d with the bound
electron. Thus the transformed electric dipole Hamiltonian (4.32) is

H = §p—2—+V(x)—ex.El+§1; / d®r(Et?+B?)+27 / d*rP4(r)* . (4.40)
m
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This Hamiltonian is equivalent to the “A - p” form (4.19) [or (4.25)]:
calculated physical quantities will be the same regardless of whether we
use (4.19) or (4.40) as our Hamiltonian. Formally this is trivial, of course,
provided we remember to transform state vectors in the fashion |¢) =
U|#).! We will use the traditional form (4.19) of the nonrelativistic electric
dipole Hamiltonian.

4.5 Heisenberg Equations

It is well known that the Heisenberg picture often facilitates physical in-
terpretation, and this is certainly the case in the nonrelativistic theory of
atom-field interactions. In this section we write the Heisenberg equations
of motion for x, p, and ay, .

The Heisenberg equations for the electron coordinate and momentum
are easily found from (4.25) to be

% = (ih)~Yx, H] = %(p - %A), (4.41)

p = (ih)"[p, H] = -VV(x). (4.42)

These are formally the same as the classical equations (4.20) and (4.21). In
particular,

m¥x = —VV(x) + €eE, (4.43)

which is formally the same as the Newton equation of motion for an electron
in a potential V' (x) and an electric field E.?
The Heisenberg equation for ay, is also easily obtained:

agy = (h)7 g, H)

. oy € (2mhe?\ Y2
= —iwgay, — (i) 1_( ) P ey,

me \ wpV
oy €2 [27hc? 1/2 A
+(’lh) lm(wkv ) Z (wk,v> €k, "€k
k'a

}Note that (4.40) is written in terms of the old (untransformed) canonical variables.
A diflerent Hamiltonian having the same form as (4.40) can be obtained by writing the
original Hamiltonian (4.19) in terms of new canonical variables. In this case it is not
necessary to transform state vectors. See J. R. Ackerhalt and P. W. Milonni, J. Opt.
Soc. Am. B1, 116 (1984). It is worth noting that, in either case, the vector E that
appears in the interaction term is actually the electric displacement vector D. We follow
notational convention and do not distinguish typographically between E and D.

2We typically write E instead of EL when it is clear from the context that we are
dealing with the transverse electric field.
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. i/ e 9rhe? 1/2 e
= e+ () (Tov) @A)

omez \M* .
= —iwkak,\ +1 (W) X €k, - (4.44)

This equation has already been used in Chapter 2 [Equation (2.80)]. We
showed there that it implies the electric field operator

E(t) = Eo(t) + Err(?), (4.45)

where Egrg(t) is the radiation reaction field and E,(¢) is the source-free
field. Thus

2
mk = ~VV(x) + 55 ¥ +eEa(0), (4.46)

where m is the renormalized, observed mass. Equation (2.86) is the special
case, with VV(x) = (1/2)mw3x?, of this equation.

Taking expectation values over an initial state |¢) = |¥a)|vac), where
|4) is an atomic (electron) state and |vac) is the vacuum state of the field,
we obtain

m(x) = —(VV(x)) + i—g(x), (4.47)

since (vac|Eo(t)lvac) = 0. This has the form of the classical equation of
motion for the electron in the absence of any external field:

2¢2

3c3

mxXe = —VV(xcl) + Xq - (4.48)
Note, however, that in general (VV(x)) # VV({x)), and so (x) does not
in general follow the classical path. For the very special case of a har-
monic oscillator with VV(x) = mw?x, the quantum-mechanical expecta-
tion value (x(t)) does follow the classical path with xa(0) = (x(0)) and
%1(0) = (x(0)). Of course this equality of {x(t)) and xc(t) does not mean
that the classical and quantum mechanics of the harmonic oscillator are
the same! For instance, (x2(t)) # x%(t). Thus, although the equations
of motion (4.41) and (4.42) give expectation values having the same form
as the classical equations of motion (Ehrenfest’s theorem), they do not in
themselves constitute any classical imat.

There is an obvious but profound difference between the quantum-
mechanical operator equation (4.46) and the classical equation (4.48). Clas-
sically, an electron in the vacuum sees only its radiation reaction field,
whereas in QED the free-field operator E,(t) is always present. We showed
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in Sc'actio'n 2.6 that without E,(t) the whole quantum theory of a charged
particle in vacuum becomes inconsistent. Commutation relations are bro-

ker.l, op'erators dec.ay to zero, and an atomic electron would suffer the fate
of its distant classical cousin and spiral into the nucleus.

4.6 Classical-Quantum Correspondence

The transverse electric field operator at point r and time ¢ in free space is
fieﬁned by .(2.56). For an atom at r = 0,ay,(t) is given by (2.81), which
is the solution of (4.44). The first term on the right side of (2.81) leads to

the source-free electric field (2.83). The second t i
field due to the dipole source: erm gives the part of the

1/2
El(r,t) = iZ(%hwk) ie( 2r_\'/?
14 hwV

kx

¢
X /0 dt'ek/\ -J'((t/)eiw*('l"')] ek,\e'.k'r + h.c.

_ 27e ¢ . o (1! ;
= v %:/0 dt'[ek)\ .x(t’)ewk(i -')]ekxenkr +he.
A

2me V 3. ikr b ot
—— —— LY S twir(t' —t
V87r3/dke /odte MY

X %j[ekA - x(t')]ey, + h.c.

e A~ . t . I
= i / Pkl — (- k)RR /0 dt'i(t')e ) + hee,

(4.49)

where i and k are unit vectors in the directions of x(t') and k, respectively.

Now

/ PrackT = g / dkk? / dy e’k T
. 27 L
= p/dkk2/ d¢/ dosinoeikrcosﬂ
0 0

S 2 sinkr
p/dkk (47r e ) , (4.50)
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and
1
/ &Br(i - ic)ice"k-r = / dkk? / dﬂkﬁ[k,px + kypy + ki)
x [ko# + kyd + ko 2], (4.51)

nts an element of solid angle in k space, and for the pur-
d angles about k, we have chosen
ibutions

where d(} represe ‘
pose of performing the integral over all soli 1t k
r to define the z direction. Retaining only the nonvanishing contr

to (4.51), we have

2% L) ] . y
/ d3k(ja - Bke'kT = / dkk® /0 d¢ /0 d0 sin O, & sin’ 6 cos® ¢
+ py Y sin? @ sin? ¢ + p, 2 cos® fle'tr cosd
R [ 2sinkr 2coskr
27I’/dkk2[(;lz:t + I‘yy) k373 - k2r2

sinkr 2sinkr 2coskr
+2y,2( o " kA o ]. (4.52)

The combination of (4.49), (4.50), and (4.52) yields

sinkr

‘ . * ikc(t'—t P A T
Birt) = —= /0 dt'i (1) /0 akk2ert'= ([a - (a - AR

. ..sinkr coskr
—{n- 3 1')1'][—,?5:3— - W]) + h.c.

= 22 [avs) (Ra- Goddl [ deksinkrcoskelt' —1)
m Jo r 0

—[p-3(a- i')i'][% /0 dk% sin kr cos ke(t' —t)

L dk cos kr cos ke(t' — t)]) . (4.53)

r2 Jo

Since

* T 0 r r
/ dkk sin kr cos ke(t' —t) = — 6 —t+ z)—&(t'—-t— c)], (4.54)
0

2c% ot

* 7r r r
/ dk cos kr cos ke(t' —t) = E;[&(t' —t+ -c-) +6(t' —t—- c)], (4.55)
0

it follows that
: © [~ (- (- ) = 5l = 3G AR - D)
El (l‘,t) = —-CT"-[# - (I“ ¢ cr3 c
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+ 2203 97 [ dsyre o), (4.56)

where

F{t'-t)= / dk;lc- sin kr cos ke(t' — 1) . (4.57)
0

The last term in (4.56) may be evaluated by partial integration:

/0‘ dt'a(t)F(t' —t) = ——g—:c(t - %) + Z2r-:c(t) , (4.58)
whereupon
Ef(rt) = ——la— (i iit-1)
- —5la = 3(a- e - 2) - la— 3 Pile(t - 2)
+ 5[ - 33 P)ile(e) . (4.59)

The last term in this expression for the transverse part of the electric
field operator due to an electric dipole efiz(t) at r = 0 is unretarded. There
is nothing wrong with this unretarded contribution to the transverse field:
only the complete, transverse plus longitudinal field must be purely re-
tarded. The longitudinal part of E,(r,) is easily obtained from (4.15) and
has the same form as the classical electrostatic dipole field:

El(x,t) = -Vé(r,t) = %[3(;2 AP — Ala(t). (4.60)

The complete electric field operator associated with an electric dipole efiz(t)
is therefore

E,(r,t) = E&(r,t)+El(r,1)
= —la—(a-PFE - ) - 5l — 3G Al - 0)
- =5la -3 F)la(t - 7). (461)

This field is purely retarded, and has the same form as the classical electric
field of an electric dipole. This formal correspondence between the classical
and quantum dipole fields was employed in Section 3.11 in connection with
the van der Waals interaction.

~ The formal correspondence between classical electromagnetic fields and
QED Heisenberg-picture field operators holds for all multipole orders. In
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fact the Mazwell equations themselves have the same form in classical and
quantum electromagnetism. The crucial difference is that in the quantum
theory the fields are operators in a Hilbert space.

One consequence of this difference is that in QED the fields must have
gero-point energy and fluctuations even in the absence of any sources of
radiation. This is not to say that we cannot have source-free fields in clas-
sical electromagnetism. Rather, the absence of zero-point fields in standard
classical theory lies in the assumption that there are no fields in the absence
of any sources.

We can go beyond standard classical theory and postulate the existence
of zero-point electric and magnetic fields in the absence of any sources.
The resulting electromagnetic theory differs profoundly from QED, but it
is able to account for some vacuum-electrodynamical effects within a fully
classical framework. During the past few decades this classical theory of
“stochastic electrodynamics” has been a fairly active area of research, and
we describe its principal features in Chapter 8.

4.7 Two-State Model for an Atom

The Heisenberg operator equation of motion (4.46) for a bound electron
is not very convenient for calculations pertaining to atoms in fields. This
is because it does not exhibit explicit information about the unperturbed
energy levels of the electron in the potential V(x). To obtain Heisenberg
equations that explicitly account for the bound energy levels, we return to
the Hamiltonian (4.25) and write

Havom = (Z_ |i>(i|)HAtom(z: 1Gh
= E |8} (51(i| H Atoml5) = Z |4) {41 E; (il3)
ZE,-li)(il = EE;U,-,- : ' (4.62)

I

Here |i) denotes an eigenstate of Hatom, and the set {|i)} is complete, so

that Y, i) (i| = 1.3

3Completeness of the set {I#)} is guaranteed by the Hermiticity of Hatom and the
fact that the energy levels E; are bounded from below but not from above. See T. D.
Lee, Particle Physics and Introduction to Field Theory (Harwood Academic Publishers,
Chur, Switzerland, 1981), p. 12. If the Hilbert space spanned by the eigenvectars of
Hatom were finite, completeness would of course be trivial.
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Similarly
p= 2}: l)Glplili) = D pisli)(il = D pijoi; - (4.63)
i, i ij
Then the Hamiltonian (4.25) is ]

= . t 1 |
H E Eioii+ Y hunlaf, iy + 51= 530 3 Cppgslag + a1

kx 37 ka
e? (27rﬁc2 1 \Y?
L i
e L v ) () o+ ok
]
X [ak')\’ + akIAI]ekA ) ek’,\l ) (464)

where

C _ € o1 \!/? . 2r \'/?
ij =m hka Pij - ek)\ = 1€ (W) Wij X5 -ek)\ . (4.65)

A considerable simplification is realized if we restrict ourselves to the
twq-state model of an atom. In this model the Hilbert space of the atom is
a}‘tlﬁcially truncated to the two states |1) and |2) with unperturbed energy
eigenvalues E) and E,, E3 — E; = hw, > 0. Then, since 11 + 022 = 1,

Y Eioii = Eio11+ Ezo
_ 1 1
= -2—E1(Ull +1- 022) + 5E2(022 +1- 0‘11)
1 1
= §(E2 — Ey)(022 —on1) + -2-(E1 + E3)
_ 1 1
= 5o, + -2—(E1 + Ey), (4.66)
where
O, =022 —011 . (467)
Also
Z CkA.'j”ii = Ckn2012 + C'k,\mﬂzl
'l]
= _C'kAZI(Ul2 - 021) = —Ck)‘o’y y (468)
where

1/2
— : L
CkA = —10‘0\2l = €W, (W) X12 ekA (469)
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and

oy = i(an - 0'21) . (470)
In the second line of (4.68) we are assuming X3 = Xz for simplicity and
without any loss of generality whatsoever for our purposes. (This equality
can always be satisfied with an appropriate choice of the phases of the wave
functions v, and ¥.) We also define

0z =012+ 021, (4.7)

and it is easily shown that 0., 0y, and 0, satisfy the spin-1/2 Pauli algebra:
[02,04) = 2i0;, [0y, 0] = 2i0s, [0,,04) = 2i0y, and 0 = 05,02 = 0y,05 =

o,. In terms of these two-state operators,

1 2
H= -é-hwoaz+§ hUJkaL’\akA-Fhi‘__:Ck)‘[akA-f'aLA](fy-FWAz , (472)
A A

where now we have dropped the additive constants %(E 1+ E2) and Zk N %hwk
from the Hamiltonian. It is also convenient for some purposes to write
(4.72) as

2

_1 t : t e Az
= Shwoo, +3 hwpal ag, +if Y Calak + oy, o~ o1+ A%,
ka kx
(4.73)
where o = 012, ol = 021. Note that
o|l) = o32|1) = |1){2]1) = 0, (4.74)
and similarly
Ay =12), ol2)=11), o2)=0. (4.75)

Because of these properties, o and ot are called atomic lowering and raising
operators, respectively. It is easily shown from the definitions of these

operators that »
(0,01] = —0., [0,0:] =20 (4.76)

The Hamiltonian, of course, may be used in either the Schrodinger or
Heisenberg picture, or any other picture. We will work in the Heisenberg
picture with the equations of motion

ihoy; = [o4;, H], (4.77)
ihay, = [ag H), (4.78)

Operator Orderings 131

for the atomic and field operators. Now
[o4j, o] = (1) G k) = )Gk — [R)QUEN G| = Sjoir — briow; (4.79)

and, of cc.)urse, [ak'\,aLx] = 6i,k' 6x,ar. These commutation relations, to-
g.ether with the commutativity of equal-time atomic and field operators
(ie., '[a,-_,-(t),ak,\(‘t)] = 0, etc.), lead via (4.77) and (4.78) to the explicit
equations of motion for the operators o;; and ay, .

Fran the Hamiltonian (4.73) and the commutation relations we obtain
the Heisenberg equations of motion

6 = —iw,o+ E Cxlog, + ait()‘]az, (4.80)
kx
oy = =2 ; Calages + o Jlo + o1, (4.81)
A
i, = —iwgay, + Cp,lo—ol]. (4.82)

Ir'l writing (4.82) we have ignored the effect of the A2 term. This point is
discussed in Section 4.9.

4.8 Operator Orderings

Siqce equal-time ‘atomic and field operators commute, we can write the
Hexs‘enberg equations (4.80) and (4.81) in different but equivalent ways.
For instance, we can use the normal ordering in which photon annihilation

oper‘ators aj, appear at the right and creation operators at appear at the
left in operator products: kx

6 = —iwo+ ; Cralosagy +af ], (4.83)
A
o, = —2§Ck'\[(¢7+af)ak)‘+aLA(a+ai)]. (4.84)
A

Or we can antinormally order the field operators:

6 = —iw,o+ Z Cxalag,o: + o;,a}o‘], (4.85)
ka
0 = 23 Clagae+oh)+@+ohial ] (186)

ki



132 Nonrelativistic Theory of Atoms in a Vacuum

Another ordering of interest is the symmetric one:

6 = —iw,0+ % ZCkA[o,(ak'\ + a;[u) + (ay, + aL'\)a',], (4.87)
kx
6, = — ECkA[(‘T + ot)(ak)‘ + a;‘u) + (ay, + a};)‘)(tr +ah).
ka
(4.88)

To get a sense of the implications of different orderings, consider the
formal solution of (4.82)*

t
ak)‘(t) = ak)‘(O)e".“”‘t + CkA/ dt'lo(t') — aT(t')]e‘“’*(tl—‘)
0
= ay,(0)e™* +ag, (1) (4.89)

The first term is the source-free part of ak, (t), whereas the second term
is the part due to the source, which in this case is a two-state “atom.”
Now if we use (4.89) in (4.83), and take expectation values over an initial
atom-field state |vac)|ya), where |¢a) is an arbitrary state of our two-state
atom, then

(1) = —iwo (o) + Y Crllo:(t)aky (D) + (a}‘u,,(t)dz @) (4.90)
kx

Since ay, (0)|vac) = 0, the source-free part of ay, (t) does not appear ex-
plicitly in this equation. If, however, we use (4.89) in the antinormally
ordered equation (4.85), then

) = —iwo(o®)+ Y Crallaxa(0)o: (t))e™ ™ + (ayy ,(1)o: (1)
ka

+ (oa(al, @) + (o af, O (4.91)

In this case, since (vac|ay,(0) and af (0)|vac) do not vanish, the source-
free part of the field does make an explicit contribution. In physical terms,
the vacuum field appears to make an explicit contribution in (4.91) but not
in (4.90), where only the source field appears. Since equations (4.90) and
(4.91) are equivalent, this suggests that there are different but equivalent
interpretations in terms of vacuum and source fields. These interpretations
are discussed in Sections 4.10-4.13.

4Note that in writing equation (4.89) we assume that the atom-field interaction is
agwitched on” at ¢ = 0. Prior to this time the atomic and field operators act in different
Hilbert spaces and therefore commute. Unitarity guarantees that they commute at all
times.
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4.9 Spontaneous Emission and the Lamb Shift
It follows from (4.89) that

t
X o, (0 = T [ attoe) - otnen o)

L h h ﬁ ld cou ng i uiﬁc € t y we. we
et us assume t a,t t € a.tOIll € O pll SSs l
g 1en ak that can

o(t') = o(t)e w1 (4.93)

at(t') = a’t(t)e'.""’(tl"’) (4.94)

in the‘integrand of (4.92). This is called a Markovian approzimation be-
cause it replaces the field operator (4.92) by an operator that depends on

the atomic variables at the same time ¢, wi
. , without any “memory”
variables at earlier times: g ry" of these

t
Z CkAakA,a(t) =3 a(t) Z C]ZD\ / dt'e’.(w" —wo)(t'~t)
kx ki o

t
—a't(t)ECi"u/ di'ei(wrtwo)(t'=1) (4.95)
0

kx
In the mode continuum limit,
Scg, / P S D R / " dow [ dg 2
o 0 RS J, / k;|"12 el

t
X dt' e (w—wo)(t'=1)
- 2ew?|x;,|?

0
oo t ) ,
Irhed /0 dww/o di'efw—wa)(t' =) (4.96)

The integral over time,

t
Hwewo)(t'=1) _ s 1 — cos(w — wo)t sin(w — t
/ ¢ =i [ ) ] ponlw —wolt g7

0 W =W W — W

arises frequently i.n QED and is treated as follows. The bracketed factor in
the first term vamghes if w—w, = 0, but is effectively (w —w,)~! otherwise
because of the rapid oscillations of cosw,t, sinw,t for w,t >> 1. Similarly



134 Nonrelativistic Theory of Atoms in a Vacuum

the second term effectively vanishes unless w —w, = 0, in which case it
becomes t. Thus, when (4.97) appears in an integral over w, we make the

replacement

/¢ i) _y _ip ( lw ) + 76(w — wo) (4.98)
W — W
0

for sufficiently large times. Here as usual P and 6 c.lex}ote the_ Cauchy
principal part and the delta function, respectively. In similar fashion

]tdt’e‘(”+”°)("")*-i( 1 ) (4.99)
0

W+ Wwo

and therefore

3 Cratn,, () = (B — iB2)o(t) + inot (1), (4.100)
kx
where
g = weldul® (4.101)
- 3hed
2w2|d ;o2 /°° dww
= Zelci2l p : (4.102)
A2 - 37|'h03 0 W—Wo
A, = 2w2|dy)° /°° dww , (4.103)
3rhed Jy wHwoe

i ic di iti trix element.
and d;, = ex; is the electric dipole tra.nsmf)n ma '
We now use the approximation (4.100) in the equation (4.90) for the
expectation value {o(t)) when a normal ordering is chosen:

(6) = —iwolo(®) +[(8 — iB){o:())o®) +iAi(e: (1) @)
+ (8 + idg) (ot (t)o. (1) — iB1 (o (D)o ()]
= —iw,{o(t)) — [B— (A2 = ADNe(®))
—[B+i(Az — Ao (@)
= —iwo — (A2 — AD}(0(®)) — Blo(t))
—[B+i(Az — AN (B)), (4.104)

where we have employed the equal-time identities 0,0 = —0,00, = o, and

their Hermitian conjugates. . . o
Now according to (4.93) and (4.94), the time evolution of (o()) is pri-

. . . . 0'
marily an oscillation ~ e~*“~* and that of (af(t)) an oscillation ~ e**°*.
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The effect of (ai(t)) on (o(t)) in equation (4.104) may then be assumed
to be negligible. In this so-called rotating-wave approximation (RWA) we
write

(6(2)) = —i[w, — (A2 — AL){o(2)) — B(o(2)). (4.105)
Note that ]
p=gAn, (4.106)

where Aj; is the Einstein A coefficient giving the rate of spontaneous emis-
sion for the 2 — 1 transition. The reason that § is half the A coefficient
becomes obvious if we consider the atomic state ¢;|1) + ¢2|2), for which
(¢(0)) = c}ca. Since the upper-state probability |c2|? decays at the rate
A =2 and the lower state does not decay in our two-state model, we can
infer that (o(2)) should decay at the rate g.

It is also obvious that —(Az —~ A;) represents a shift of the transition
frequency w,. Note that, since m2w?|d;;|? = €?|p12|? ,®

2¢ [ 1)? 0 dEE
_hA, = <L 2 .
2 37 (mc) P12l /0 F—E—E° (4.107)

2a [ 1)? o0 dEE
—h = == 2 '
A1 3r (mc) P12l /0 E,—FE,-E (4.108)

for our two-state atom. The generalization to a real atom with energy levels

{E,}is

_ 2a ((1)? , [° dEE
—~hA, = AFE —3;(;"—0) ;'Pmn|/0 m, (4.109)

which is the expression (3.20) for the shift in the energy E, due to the
interaction of the atom with the vacuum electromagnetic field. Mass renor-
malization and a high-frequency cutoff in the nonrelativistic theory lead to
an accurate estimate of the Lamb shift in hydrogen, as discussed in Chapter
3

From equation (4.84) we obtain similarly the equation
(@:(1)) = -2) Cr,l{e(®)ay, () + (GLA,,(t)U(t))
kx
+He Qa0+ 6, 0oto), @110

Following a notational convention, we do not explicitly indicate the fact that the
integrals for the radiative shifts should be understood in the sense of the Cauchy principal
part.
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when the normal ordering is used and vacuum expectation values are taken.
The Markovian approximation (4.100) then gives

(0:(0) = —48(et o) = —26[1 + (o=, (4.111)
when we use the fact that o2 is identically zero at all times. Thus
(0:(2)) = =1+ [1 + 0. (0)]e™ " (4.112)

If (0.(0)) = |e2(0)|? = le1(0)|* = 1, i.e., if the two-state atom is initially in
the upper state, then there is exponential decay to the lower state (with
(0,) = —1) at the rate 26. If (5:(0)) = —1, then (0, (t)) = -1, ie, if the
atom is initially in the lower state of the transition, it remains for all time
in that state.

The Markovian approximation therefore leads to the correct Einstein A
coefficient and the same radiative level shift given by second-order perturba-
tion theory. It also predicts that the spontaneous decay of the excited-state
probability is purely exponential. As discussed in Section 4.14, these results
are the same as those obtained by “standard” Weisskopf-Wigner theory.

It is also worth noting that exponential decay here is an approzimation.
Indeed it is known that a system whose energy levels are bounded from
below cannot exhibit purely exponential decay. However, the deviation
from exponential decay for a radiating atom turns out to be very small, as
discussed in Section 4.14.

It should be recalled that we have neglected the A? term in the Hamil-
tonian. As noted in Section 3.4, this term does not contribute to observable
level shifts in the dipole approximation, and it is also easy to show that it
does not affect the calculation of the A coefficient. The A? term can affect
the calculation of the (“natural”) lineshape of spontaneous emission,® but
for our purposes this effect of the A? term may be ignored.

4.10 Normal Ordering and Source Field

In the calculations of the preceding section we employed a normal ordering
in which the source-free part of the electric field operator made no contri-
bution to vacuum expectation values. That is, the vacuum field made no

6p. W. Milonni, R. J. Cook, and J. R. Ackerhalt, Phys. Rev. A40, 3764 (1989). If
the x - E form of the interaction is used, A? does not appear explicitly but is included
uantomatically” in the calculated level shifts. The expectation value of (e7/2'mc2)Az
can therefore be subtracted from the level shifts calculated with the x - E interaction.
In the calculation of frequency shifts, of course, the A2 contribution to the levels shifts
will cancel out anyway. See Milonni (1976).
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explicit contribution to the radiative decay or level shifts; these “radiative
correct:iops” were due entirely to the source or radiation reaction field.

'ThlS is remarkable in view of the simple and seemingly natural ways in
whlch. the level shift, in particular, was interpreted in terms of the vacuum
field in Chapter 3. In spite of such appealing derivations we have now
ap;?ar'ently found that the vacuum field has no effect on the level shifts!
This is because we have employed the normal ordering of field operators
where the vacuum field contributes nothing to vacuum expectation va.lue;
because ay, (0)|vac) = (va,c|a'r ,(0)=0.

Two caveats are in order ]flere. First, in our calculation the atom does
not really “see” the radiation reaction field as such: the vector potential
associated with the radiation reaction field is

9rhe?\ /2
Agr(t) = kz ( % ) lag, () + alto‘,a(t)], (4.113)
A

whereas in (4.90), for instance, ay,  (¢) and a}u’s(t) appear in the com-

bination o, (t)ay, ,(t) + a};’\,a(t)a',z (t) rather than [ak)‘"(t) + aL\ ®)]e(¢)

or o;(t)[ay, ,(t) + a;ru”(t)]. This difference arises as a consequence of our
normal ordering. In this approach it is not the vector potential that ulti-
mately appears in vacuum expectation values, but its photon annihilation
and creation parts, and these do not appear in the symmetric combination
that we identify with the vector potential operator.

. Second, the radiation reaction electric field” involving a third derivative
with respect to time [equation (4.46)] is not obtained in the Markovian
approxupatlon we have employed. This approximation proceeded from the
assumption that the time evolution of ¢(t) is primarily a sinusoidal oscilla-

:i}on at frequency w,. If we use this approximation in (4.46), for instance
hen ,
. 2e2w? .

mx = -VV(x) — 33 X + eE,(1). (4.114)

This implies that radiation reaction damps x at the rate 2e2w?/3mc3. If we
v 2 i .

replace e® by e .ff where f = 2mw,|d;,|?/he? is the oscillator strength of
the 2 — .1 transition, then this dipole damping rate becomes the Einstein
A coefficient (see Appendix A).

7 .

, For tbe quantum'-metfhamcal calculation, as well as the classical, we must retain the
A? term in the l'-lamjltoman to obtain the correct radiation reaction field. The A? term
leads to expressions involving p + (e/c)A = mx, whereas only p appears when A2 is
ignored. For the purpose of getting the correct result without the A? term we can simpl;
{but not rigorously) replace p by mx in the calculation of ERp(t). iad
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Although these things should be borne in mind when we attribute spon-
taneous emission and the level shift to radiation reaction, we are certainly
justified in saying that only the source part of the field is responsible for
these effects when they are calculated with a normal ordering of field op-
erators. We emphasize again how different this interpretation is compared
with those based on vacuum field fluctuations in Chapter 3. However, the
latter interpretations also contain an element of truth, as we shall now
show.

4.11 Nonnormal Ordering and Vacuum

We have emphasized that the vacuum field is absolutely necessary in the
quantum theory of radiation, if only to preserve commutation relations and
the formal consistency of the theory (recall Section 2.6). To see an explicit
role for the vacuum field in the theory of spontaneous emission and the
Lamb shift, all we need to do is perform a calculation similar to that in
Section 4.9, using a nonnormal ordering of field operators.

Suppose we use the antinormal ordering, in which (&(t)), for instance,
is given by equation (4.91). The Markovian approximation (4.100) for the
source part of the field operator, Yk Ck,\ak,\,a(t)’ gives

(@) = —iwe(o() + [ —i(A: - A)(a())

+ 2 Cx [{ay(0)o (t))e “** + (o, (t)“LA(O»e‘w"t]’
kx
(4.115)

when we make the RWA and use the identities o(t)o (t) = o(t) and o, (t)o(?)
= —o(t). The first two terms on the right side of this equation are similar
to the right side of (4.105), but the terms associated with the level shift and
spontaneous decay in (4.105) have the opposite signs in (4.115). Obviously
this difference must be made up for by the vacuum field terms involving
ay,, (0) and @} (0) in (4.115).

To evaluate the vacuum field terms we use the formal solution of equa-
tion (4.86),

o.(t) = 0:(0)— 22010‘ [/ dt’ak)‘(t’)[a(t’) + Ut(tl)]
kx 0

+ /o dt'[a(t')+af(t')]a}u(t')], (4.116)
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in (4.115). Thus

5o 00 = -2, [ (e @+ ot

Xap())e™ " + / &t (ag, 0a, (V)lo () +oF (t')])]
(4.117)

Here we have used the fact that (g}, (0)o:(0)) = (0:(0)ay, (0)) =0, as well
as the equal-time commutation relations a ot t :

k@)t (') = gl (t)ay, ('),
a’(t’)ak‘)‘(t’ ) = ak):(t' )o(t'). Furthermore, to remain to the sa?mlé)‘c()rc;er of
approxnm.atlcfn as in the calculation of Section 4.9, we replace ay, (t') by
ay, (0)e~twxt’: o

E Cxx(ag, (0)o (2))e ert =
ka

_2§:cfu /o dt'(akA(O)a}u(O)[a(t’) +ot@))e -9 (4.118)
A

We have used here the fact that the vacuum expectati
- tat 1 tiet
x ay,(0)) is 0. And since P ion value (ay, (0)o!(t')

(VaCIGk,\(O)aL\(O) = (vaC|[aL\(0)akA(0) + 1] = (vac|(0+1), (4.119)
%: Cloa{agr (0): (B))e™xt = 2 kZCk U dt' (o (t'))etr*'=0

N /ot dt;(a_f(tl))eiwk(t'—t)]

t
~2(o(t) 3G, [ drreiren=0
kx 0

iR

t
- 2<Ut(t)) ECIQ(A / dt’ e (Wrtwo)(t' =)
ka 0

> _9(8 —iAs)(o(t)) + 2iA, (ol (@)
(4.120)
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in the Markovian approximation. It follows by complex conjugation that

3 Cpeplo=(D)al, () = ~2(5 + i) (ot (@) — 2iA1(e())  (4.121)
kx
and finally, using (4.120) and (4.121) in (4.115),

(6(2)) = —iwo — (B2 — ADN{e(?)) — Blo(®) (4.122)

in the RWA. We have thus recovered (4.105) starting with an antinormal
ordering of field operators.

Looking back over this calculation, we can see that the source field
contributes (Az—A;) to the tadiative frequency shift, whereas the vacuum
field contributes —2(Az — A1), giving the complete shift —(Ay—Ap) of
Section 4.9. We can similarly describe the origin of the decay rate 8 in this
calculation.

In other words, when a normal ordering is used, the entire contribution
to the level shift —hA, comes from the source field, whereas when an anti-
normal ordering is used, —2hA, comes from the vacuum field and another
hA, from the source field. Although we have shown this explicitly only
in the two-state model for an atom, the same conclusions apply for a real
atom (Milonni and Smith, 1975; Milonni, 1976).

A calculation of (;(t)), using antinormal ordering and the Markovian
approximation, gives contributions —4p(0,(t)) from the vacuum field and
—28[1 — (0,(t))] from the source, so that

(6:() = —4B(o.()) — 2601 — (= ()]
> _98[1+ (o)), (4.123)

as in Section 4.9. As in the case of the level shift, therefore, the decay
of the population difference (o;(t)) has contributions attributable both to
the source field and the vacuum field when the field operators are antinor-
mally ordered. These are important results for the physical interpretation
of spontaneous emission and the Lamb shift, but before discussing them
further it will be useful to consider one other ordering.

4.12 Symmetric Ordering

The symmetric ordering defined in Section 4.8 is special in that the op-
erators ap, and gy, appear in the combination that defines the vector
potential. Equation (4.87), for instance, may be written as

Wo

o= —iw,0 + mdlg fo:A+ Aoc;]. (4.124)
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Since
2 diy AG) = 3 % Ciorlagy (00 + ay, , ()] +hc.
o %% Cher gy (0)e=* + %(ﬂ —iAg)o(t)
+iAof(t) +hec. (4.125)
in the Markovian approximation (4.100), we have
(0()) = —iwo(o(t)) + %[ﬂ — (A2 + A1)[{o:(t)o(t) + o(t)o.(1))
+ 318482+ Ao, () + o (Do 1)
+3 >l (Haf (O™ + (age, (0 (1)) e~
(4.126)

whfan a vacuum expectation value is taken. Since the two-state operators
satisfy o,(t)o(t) + o(t)o,(t) = 0, furthermore, (4.126) simplifies to

o 1 .
(O’(t)) = -, (d(i)) + 5 ;;Ckk [(U'z (t)aIu(O))ewkt + (akA (O)Uz(t))]e_iw"t.
A
(4.127)

Without continuing the calculation further we can already draw an im-
portar}t conclusion: when the field operators are symmetrically ordered
there is no contribution from the source field to the level shifts. The shifts
come entirely from the interaction of the atom with the vacuum field. The

vacuum contribution to (4.127) can be read from (4.120 i
the familiar (RWA) result (4:120) and (8.120) with

(6(1)) = —ilws — i(A2 — A)(0(0)) - Blo(®).  (4.128)

Thus, whereas a normal ordering leads us to interpret the level shifts in
terms of the source field alone, and an antinormal ordering leads us to
mtc?rpret them in terms of both source and vacuum fields, a symmetric or-
dering suggests an interpretation in terms of only the vacm’tm field (Milonni
Ackerhalt, and Smith, 1973; Milonni and Smith, 1975). ’

The situation is quite different when we calculate (¢,(t)) with a sym-

metric ordering of field operators. In this case we obtain a vacuum field
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contribution —2({c,(t)) and a source field contribution —20. In fact there
is no ordering scheme in which the decay of (7, (1)), and therefore the loss
of atomic energy due to spontaneous emission, can be attributed entirely
to the vacuum field (Milonni et al., 1973; Milonni and Smith, 1975).

Cohen-Tannoudji and others have advocated symmetric ordering as a
means of removing the “ambiguity” between source and vacuum field ef-
fects. They arrive at the symmetric ordering as the preferred one by im-
posing an additional condition that source and vacuum field contributions
be separately Hermitian (Dalibard, Dupont-Roc, and Cohen-Tannoudji,
1982, 1984; Cohen-Tannoudji, 1984). This condition facilitates physical
interpretation along classical lines in the sense that the field annihilation
and creation operators appear in the symmetric combination defining the
vector potential. Of course this too is a matter of taste, since nothing in
the quantum formalism requires the source and vacuum contributions to
be separately Hermitian. In matters of taste there can be no disputes.

4.13 Remarks

The freedom to order atomic and field operators in any way we like allows
us to interpret spontaneous emission and radiative shifts in different ways
and reconciles what for many years were perceived as two quite distinct
physical interpretations.®

Spontaneous emission is one of the most ubiquitous of natural phenom-
ena, and in the Introduction to Chapter 3 we stressed the importance of the
theory of spontaneous emission in the development of quantum mechanics.
We noted that Landau and van Vleck, among others, interpreted sponta-
neous emission as a consequence of radiation reaction, as did Dirac, who
wrote in his 1927 paper that his theory “must presumably give the effect of
radiation reaction on the [atom).” Similarly, Slater wrote that “The part of
the field originating from the given atom is supposed to induce a probabil-
ity that the atom lose energy spontaneously, while radiation from external
sources is regarded as inducing additional probabilities that it gain or lose
energy, much as Einstein has suggested ..”°

Interpretations in terms of the vacuum field arose in connection with
efforts to understand radiative corrections and to remove divergences in
QED calculations. We noted in Chapter 3 that such an interpretation

8This way of reconciling the radiation reaction and vacuum field interpretations was
found independently by P. W. Milonni, I. R. Senitzky, and W. A. Smith. (Senitzky,

1973; Milonni et al., 1973)
9], C. Slater, Nature 113, 307 (1924).
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was .a.dvanced by Weisskopf and Welton, among many others, in this con-
n_ectlon, and that it has persisted more or less intact up to’more recent
times. Thus Welton, in his 1948 paper interpreting the Lamb shift, wrote
that “spontaneous emission can be thought of as forced emission,takin

place.under the action of the fluctuating field,” and Weisskopf, in a 198!1;
overv;ew of qu&fntu.m field theory, said that “spontaneous emissi,on appears
:xnsa:n::icce?iecl)gt':’l’llatlon caused by the zero-point oscillations of the electro-

We can now see that these interpretations were oversimplified. It is
t‘rue that we can describe the Lamb shift, for instance, in terms of‘ radia-
tion reaction alone. It is also true that we can describe it solely in terms
of t'he vacuum field, as in the derivations by Welton and Feynman, or the
flenvatlon that treats the Lamb shift as a Stark shift (Chapter 3), These
interpretations emerge when the field operators are normally or syr'nmetri-
cally ordered, respectively. But we can use other orderings to interpret the
:;alr(rilb shift as partly due to radiation reaction and partly to the vacuum

eld.

The situation is similar with regard to the loss of atomic energy due to
spontapeous emission. Here, however, there is no ordering that allows us
to attribute the process solely to the vacuum field. This points not onl
.to an oversimplification in the glib statement that “spontaneous emissioz
is st.lmulated by the vacuum field,” but also to an error: as we noted in
Section 3.2, a calculation based on this commonplace yields only half the
:ﬁfm.taneous emission rate. We are now in a position to understand why
m(l; ;:izc:l,‘ and also why there is no “spontaneous absorption” of zero-point

The ordering that brings us closest to a classical explanation in terms
of thfe electric field or vector potential is the symmetric one, where ay, (¢)
?:d 1lts tH.err;;i;(iian conjugate appear in the combination co;respondirlfg to

ee C 1 . .
the i:lct;:i(; o:derti)rl;gvector potential.!® We noted in the preceding section

(6:(t)) = (6:(®)) R + (6. ())vF , (4.129)
where the radiation reaction and vacuum field contributions are respectively
(0:(t))rR = —28 (4.130)

and

(6:())vr = —2B(0.(t)). (4.131)

1°Compare, for instance, equations (4.83) and (4.124).
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Now (,(t)) = p2(t) —p1(t) = 2pa(t) — 1, where py(t) and pa(t) are respec-
tively the lower- and upper-state probabilities. Thus

p2(t)rr = -8 = —%Am (4.132)

and
ba(tve = —B(o. (1) = ~5An(2p(®) = 1} (4.133)

Equation (4.133) confirms our conclusion in Section 3.2 that, if we take
the vacuum-field picture of spontaneous emission seriously and perform a
calculation based on it, we calculate only half the spontaneous emission
rate A,y for an initially excited atom. The other half comes from radia-
tion reaction, which is not part of the usual vacuum-field interpretation of
spontaneous emission.

Moreover, the conventional interpretation in terms of the vacuum field
alone does not even pose the question as to why there is no spontaneous
absorption of zero-point radiation. Indeed, equation (4.133) implies

) 1
p2(0)vr = §A21 (4.134)

for an atom initially in the lower state of the transition [p2(0) = 0]. This
would predict spontaneous absorption were it not for the fact that the
radiation reaction contribution (4.132) adds to (4.134) to give p2(t) = 0
for a ground-state atom. In other words, the dissipative effect of radiation
reaction precludes spontaneous absorption of energy from the vacuum field.

The balancing of the effects of radiation reaction and the vacuum field
on a ground-state atom is consistent with our heuristic discussion of atomic
stability in Section 3.3, where we in fact assumed such a balance. The same
balance holds when the atom is replaced by a harmonic oscillator, and
explains the need to omit the term H?_ HZ in our discussion of thermal
equilibrium in Section 2.12.

4.14 Weisskopf-Wigner Theory

In the Schrodinger picture the operators in the Hamiltonian (4.73) are time-
independent, and the time evolution of the atom—field system is described
by the Schrodinger equation, ih(8/0t)|¥(t)) = H|¥(t)). The initial state of
interest is |¥(0)) = |¢) = |2)|vac), the state in which the atom is in the
upper state and there are no photons in the field. This is not a stationary
state of the atom-field system, for there are nonvanishing matrix elements
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of H connecting this state to other atom-field states. One such state is
[8K,) = [1){1,), tl'le state in which the atom is in the lower state and
there is one photon in some mode (k, A) of the field.

If we truncate our Hilbert space to the states |¢) and |§,), and write

() = b()16) + D _ b, (DI ) (4.135)
ka

then the Schrodinger equation reduces to coupl i i ‘
‘ ed different i
the amplitudes b(t) and b, (2): ° iferential eqations for

i 1
ihb(t) = -ihwob(t)—ihzckxbkl\(t), (4.136)
k>
ibiy(t) = (hwk-—-;-hwo)bk,‘(t)+ih0k,\b(t). (4.137)

We are again ignoring in (4.73) the A? term, which has the effect of coupling
the 'stateszll)llk,\) to states |1)|1}.,,,) and |1)|1},, 1y s, 1jwyn)- As noted
egrher, A? does not affect the decay rate or observable leve? shifts in the
dipole appl:oximation, and therefore will not be of concern here.

Ev'en without A2, however, the Hamiltonian (4.73) requires a larger set
of basis states then is implied by (4.135): the interaction term

Hinr = ih f; Cirlagy +af Jlo — ot (4.138)
A

couples |@),) not only to |¢), but also to states |2){1),, 1)y}, which in
turn couple to other states to further enlarge the set of basis states needed

to represent |¢(t)). If we restrict ourselves only to “energy-conserving” pro-
cesses and make the replacement

Hine — 6 Y Cialaf. o = otay,, (4.139)
ka

however, tben the expansion (4.135) encompasses all the so-called essential
states required to describe an evolution of |(t)) from the initial state |¢)

We shall first work within the essential-states approximation wher(;
the tlme—dependent Schrédinger equation reduces to the coupled axr;plitude
cquations (4.136) and (4.137). It is convenient to write these equations in
terms of amplitudes c(t) and ¢y, () defined by writing

bt) = c(t)e w2, (4.140)
ba(t) = cp, (e et/ (4.141)
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from which
i) = -2 Craal) (4.142)
ka
ék,\(t) = —-i(wk - wo)ck)‘(t) + Ckkc(t)‘ (4.143)
Thus .
i=-3Ct, / dt' ()i en—w)E =) (4.144)
kx 0
and . ,
i) = —c)S CL, / dttHwr =)= (4.145)
ka 0
in the Markovian approximation. Then (4.96) and (4.98) give
é(t) = —(B- iA)c(t), (4.146)
or '
C(t) o e—pteiAgt - e—Azlt/2e—£(—ﬁA2)t/ﬁ (4‘147)

for ¢(0) = 1. This implies that the upp'er—sta‘te probability decays ex;t)onsn(i
tially (Jb(t)|? = e~4*?) and that thereisa shift —hA, from the unperturbe
of the state |2)|vac). N

enel'.f“l):e essential—stltc)el an)d Markovian approximations in the Schrodlpger
picture therefore lead to the same decay rate and u.pper.-level. shift obta:med
within the rotating-wave and Markovian approxxmatl.ons in the Helsen;
berg picture. Note, however, that the 1owe.r-level §hlft, —hA., has nof
appeared in our Schrodinger-picture ca1c1.11atlon. Tl}ls is a consequence od
the essential-states approximation used in connection with our assume
initial state. .

Suppose we assume the initial state |¢) = |1),|vac) instead of |2}|va.t;).
The interaction (4.138) couples this state to ld)k)\) = |2)|1k,) via the

i i i tal and if we truncate
“energy-nonconserving” process associated with a'la; ,

our Hilbert space by writing
@) = b+ b, DIek,)
kx

d(B)e gy + 3 e, (D= ?1gy,),  (4.148)
ka
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we obtain
) = =Y Crrck, @), (4.149)
kx
Gon® = —iwr + wo)ef, (1) + Cpey e, (1), (4.150)

as our Schrodinger equation. The Markovian approximation then yields
d(t) = €21 for ¢/(0) = 1, implying the level shift —hA; for the state
|1)|vac). To obtain this level shift we have had to include states coupled to
the initial state |¢’) by “energy-nonconserving” processes. Such processes
were not included in the derivation leading to (4.147), and this is the reason
for the absence of any shift of the unperturbed energy of the state |¢y ,) in
that derivation.

Of course the transitions |1)|vac) — [2)]1} ,) responsible for the energy
shift in the state |1)|vac) are virtual transitions, not real ones: for times
long compared with h/AE = w71, |¥'(¢)|* = 1 and b}, ()> = 0. [This
“long-time” assumption is in fact used in (4.99).] The virtual transitions
appear simply because none of the states in the expansion (4.148) of |(t))
are eigenstates of the atom-field system, and therefore their unperturbed
energies are not eigenvalues of the atom—field Hamiltonian. Some sort of
coupling (“virtual transitions”) between these states is required in order to
get nonvanishing corrections to the unperturbed energies.

The Schrodinger-picture theory of spontaneous emission outlined pre-
viously is similar in spirit to that presented by Weisskopf and Wigner in
1930. They were concerned with the long-time dynamics of spontaneous
emission, rather than simply the upper-state decay rate, in order to obtain
the “natural” lineshape of a radiative transition. This lineshape may be
obtained in terms of the probabilities for finding the emitted photon at
different frequences wg. From (4.137),

t
B OF = Cful/0 dt'b(t') e (wr—we)(¥'=1))2
t
= Cf / di’c(t")elwr—wo)(t' = 1))2
kA' o (t) |
t
>~ C2 / dtlei(“’k"wo'f'iﬁ)tl 2
kA' o |
C2
— "ka
(we —wp)2 + 42

where in the third line we have used the approximation (4.147), denoting by
w!, the Lamb-shifted frequency, and in the last line we have used gt >> 1.

o~

(4.151)
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This result implies that the spectral lineshape of the spontaneously emitted
radiation is approximately Lorentzian near the atomic transition frequency,
with linewidth (half-width at half-maxinmum) 3.

The principal approximation of Weisskopf and Wigner was that the de-
cay of the upper-state probability amplitude is exponential; they assumed
exponential decay and then argued that it is an excellent approximation.
‘For this reason the approximations used to arrive at exponential decay
are often referred to collectively as the Weisskopf-Wigner approzimation.
In our approach the Weisskopf-Wigner approximation is equivalent to the
Markovian approximation plus the rotating-wave or esential-states approxi-
mation, depending on whether the problem is formulated in the Heisenberg
or Schrodinger picture. '

As noted in Section 4.9, a quantum-mechanical system whose energy
spectrum is bounded from below cannot undergo purely exponential decay
from an excited state to a state of lower energy.!! It is not too difficult
to obtain corrections to exponential decay by going beyond the Markovian
approximation. In the Heisenberg picture, for instance, one finds, instead

of the exponential decay implied by (4.105), that!?

(o(2)) = (o(0)) [e-"“’o‘e‘f" + (2 f wo) (wl t)z] (4.152)

for Gt 2 1. Since 8 << w,, the correction to exponential decay represented
by the second term in brackets is significant only for times t >> B~'. The
correction to purely exponential decay is thus very small — too small to
have been observed in experiments thus far.

4.15 Neoclassical Theory

The impetus to consider more carefully the physical interpretation of spon-
taneous emission and the Lamb shift in the early 1970s came from Jaynes’s
“neoclassical theory” (Crisp and Jaynes, 1969; Stroud and Jaynes, 1970;
‘Jaynes 1973, 1978). Neoclassical theory was based on the recognition that
rather few phenomena in nonrelativistic radiation theory actually require
field quantization for their explanation, and its purpose was to explore just
how far one could get without field quantization and possibly to point the
way to alternatives to QED. Its primary focus was the theory of sponta-
neous emission and the Lamb shift.

11Gee L. A. Khalfin, Sov. Phys. JETP 6, 1053 (1958); L. Fonda and G. C. Ghirardi,

Nuovo Cim. A10, 850 (1972).
12Gee, for instance, P. L. Knight and P. W. Milonni, Phys. Lett. A58, 275 (1976).
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In neoclassical theory all electromagnetic fields are treated classically
Thus the Hilbert space for an atom in the vacuum is the space sparned b);
a c9mplete set of atomic states. There is no vacuum field, and even the
radiation reaction field of an atom is regarded as a classical, ,c-number field

The quickest way to arrive at the neoclassical equations for a two—stat(;
?,tom is to go back to (4.104) and note that the operators o(t) and ot ®
in thfa products o, (t)o(t) and a,(t)af(t) stem from the atom’s radiation
reaction field. In neoclassical theory this field is treated classically, and
a(t) an_d at(t) are therefore replaced by the c-numbers (o(t)) and (aif )
respectlvely: In other words, in neoclassical theory the expectation valuc;
(o.(t)o(t)) is replaced by (o,(t)){o(t)), and similarly all such expectation
values of operator products are factored into a product of two expvectation
values. Thus, in the rotating-wave approximation, (4.104) is replaced by

(6(1)) = —iwo(a(t)) + [B — (A2 + Ay){o: (1)) (o (2)) (4.153)

in neoclassical theory. Writing {(o(2)) = u(t)e~**~*, and assuming u(t) and
(0,(t)) are slowly varying compared with e~**°!, we obtain

&(t) = f=(1)=(t) — vy(t)=(1), ' (4.154)

y(®) = By(t)=(t) + 7z(t)=(1), (4.155)
1 . .
whfre 5z and —%y are the real and imaginary parts, respectively, of u, and
Y= Ax+ Ay, 2(t) = (021('13)). The neoclassical equation for z(t) is found
similarly by replacing (ot (t)o(t)) by (of(®)) (o)) = i[=2 2(t)] i
D) cing ®)) Py (@TONe®) = 5[=°@®) +¢* (1)} in
() = —B[1 — 22(t)]. ' (4.156)
We have used the facts that z2(t) + y*(t) + 2%(t) is a constant and that
this constant is 1 since that is its value for an atom in the upper or lower
statet'(:c =fy = (z, z = +1). Equations (4.154)~(4.156) are the neoclassical
equations for a two-state atom in vacuum (Jaynes and C i ;
Stroud and Jaynes, 1970). , Cer ummings, 1963
The mqst obvious difference between the neoclassical equations and the
corres.pondmg QED equations (4.105) and (4.111) is that the neoclassical
equations are.nonlmear. Furthermore, for an initially excited atom (z(0) =
.+1), neoclassical theory predicts that z(t) = 0, so that the atom remains
in the upper.state. However, it is trivial to show that this initial state is
unstable agal.nst. small perturbations, and so it is not immediately obvious
that neoclasglcal the01:y is in conflict with experiments on the spontaneous
decay of excited atomic states. The genéral solution of equation (4.156) is

z(t) = — tanh 8(t - ¢,), (4.157)
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where 1, specifies the initial value z(0).

Regarding the neoclassical frequency shifts, note first of all that

2w§|d12|2 o w W )
y=8a A = 3rhe®  J, dw w—wo+w+wo

4wl|dys*Q (4.158)
3rhed

—

where  is a high-frequency cutoff, is the sum rather tha:n the d.iﬂ'erence of
the upper- and lower-state energy shifts divided l?y h. It is the difference, of
course, that appears in the QED theory [Equation (4.105)]. Furthermore,
owing to the nonlinearity of equations (4.154) g.nd (4.155),.the frequency
shift of the radiation emitted by the atom is predicted to be time dependent
in neoclassical theory (Stroud and Jaynes, 1970).‘ Thleare appears to be no
experimental evidence for such “chirped” level shifts.

Such predictions of neoclassical theory are quite flifferent frorp the QED
predictions. But the most compelling evidence against neoclz?,ssmal theory
comes from the photon polarization correlations measured in three-level
atomic cascades, the same type of experiments that 'have conﬁrmed the
predictions of quantum theory vis-a-vis those of local hlflden variable th.eo-
ries (Clauser, 1972; Clauser and Shimony, 1978)._ T?le failure oi: neoclassical
theéory here is basically a failure of classical radla.?lon t:.heory in general to
properly describe photon polarization (see also Milonni 1976, 1984).

Although neoclassical theory does not a.ppe.ar.to suggest any viable al-
ternative to QED, the controversy surrounding it in the 19703lse1:ved a very
useful purpose. In particular, it led to a widespread appreciation oi: how
successful semiclassical radiation theories can be and hovy the necessity of
nonrelativistic QED can be fully supported only by resorting to rather sub-
tle effects and experiments. And neoclassical theory led the way t.o a QED
source—field approach to spontaneous emission and the Lamb Shlft,. based
mainly on the fact that the expectation values of operat_.or produc't.s lI'lVOIV}
ing the atom’s reaction field could not be factored as in our denva.tlop o
the neoclassical equations (Ackerhalt, Knight, and Eberly, 1973). This is
turn raised old questions about the role of the vacuum ﬁ('ild, an'd resulte:d
in the reconciliation of the source and vacuum interpretations discussed in

Sections 4.10—4.13.

i i term and
1314 might also be noted that what is regarded as an electror'nngnenc mass ter
removed gy mass renormalization in QED is taken to be physically observable in neo-
classical theory. See Milonni (1976).
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4.16 Discussion

We have shown how some old ideas about the physical origin of spontaneous
emission and the Lamb shift can be formulated in the Heisenberg picture.
For clarity we have dealt with a two-state “atom,” but everything we have
deduced about the nearly interchangeable roles of radiation reaction and
the vacuum field in “causing” spontaneous emission and the Lamb shift
applies also to a real atom (Milonni and Smith, 1975; Milonni, 1976).

There is one feature that is not brought out in the two-state model,
and it can be understood most easily in terms of radiation reaction: the
evolution of (0;;(t)) for a real atom is influenced not only by the radiation
reaction field associated with the dipole moment for the ¢ « j transition,
but also by dipole moments of other transitions. This leads to the appear-
ance in the theory of generalized decay rates of the form

2w3
Bimnp = 3325 dim - dnp (4.159)

and similarly generalized frequency shifts (see Milonni and Smith, 1975;
Milonni, 1976). Such terms are usually negligible, and indeed the effect
of one transition on another is typically ignored altogether in an approx-
imation akin to the RWA. For some purposes, however, these generalized
damping and frequency shift terms should be retained.!* Since they have
no specific bearing on radiation reaction or the vacuum field and can be
described in terms of either, we shall not discuss them further here.

It can be argued that the physical equivalence of radiation-reaction and
vacuum-field interpretations of level shifts is already clear from Figure 3.2,
which represents a level shift in terms of the emission and absorption of
virtual photons. This is obviously a vacuum field process, in that the field is
in the vacuum state “before” the emission of the virtual photon and “after”
its absorption. As discussed in Sections 3.6-3.8, we can in fact derive the
level shift by taking the viewpoint that the fluctuating vacuum field acts
as an external perturbation of the atom. On the other hand we can regard
the emission and absorption of virtual photons in Figure 3.2 as defining
a self-interaction. This viewpoint, too, can be supported by deriving the
level shift using the atom’s radiation reaction field as the perturbation. The
interchangeability of these two viewpoints may be explicitly demonstrated

HR. J. Cook, Phys. Rev. A29, 1583 (1984), and references therein. The generalized
damping and frequency shift terms were apparently first discussed in the modern liter-
ature by Milonni and Smith (1975}, although such terms appeared in an old paper by
l.andau that is more noteworthy as an early application of the density-matrix formalism.
See Collected Papers of L. D. Landau, ed. D. ter Haar (Gordon and Breach, New York,
1965), pp. 8-18.
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using different but equivalent orderings of field operators, as we have shown
in this chapter.

One can take a stance “against interpretation,” arguing that the cal-
culation of the spontaneous emission rate or the level shift can be carried
through without ever having to worry about physical interpretation. But,
if “QED is the best theory we have,” and if in fact the vacuum “holds the
key to a full understanding of the forces of nature,”!® then certainly every
attempt should be made to identify the physical mechanisms underlying
QED vacuum effects.

Indeed, as discussed in Sections 3.2 and 4.13, physicists have for many
years sought a “cause” for spontaneous emission. We have emphasized
that the prevailing view of spontaneous emission as being induced by the

vacuum field is, however, not quite correct; it is not possible to describe the -

Joss of atomic energy to radiation without invoking the source field. The
source field provides a “missing 1/2” and prevents an atom from undergoing
“gspontaneous excitation” by absorption of energy from the vacuum.
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Chapter 5

Interlude: Radiation
Reaction

... we have allowed what is perhaps a silly thing, the possi-
bility of the ‘point’ electron acting on itself.
— Richard P. Feynman (1964)

5.1 Introduction

In QED a charged particle in vacuum is acted upon by its own radiation
reaction field as well as the vacuum field. In standard classical electro-
dynamics, however, there is only the radiation reaction field to act on a
single particle in the vacuum. The possibility of ascribing spontaneous
emission and the Lamb shift to radiation reaction thus provides a more
classical interpretation than that based on the fluctuating vacuum field.
Mass renormalization, for instance, may be viewed as a natural extension
of the classical theory, where the electromagnetic mass of a point charge is
likewise found to be infinite.

As noted in Section 2.6, the vacuum and radiation reaction fields have
a fluctuation—dissipation connection, and both are required for the consis-
tency of QED. The idea of a fluctuating vacuum field existing in the absence
of any sources may seem peculiar from a conventional classical standpoint,
but when it comes to radiation reaction the classical theory itself has some
curious features. In this chapter we briefly review some aspects of the the-
oty of radiation reaction. Sections 5.2-5.4 are deliberately sketchy, since
much of the material is covered in standard texts or reviews (Erber, 1961;
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Plass, 1961; Jackson, 1975; Klepikov, 1985; Grandy, 1991), a.nq we focus
primarily on the physical ideas rather than details of the formalism.

5.2 The Abraham—Lorentz Equation

The electric field of a point charge e at the position of the point charge is
ix D
(Appendix D) %, bm, o)
ERrr = E_CE X — p X, . .
where 6m is the electromagnetic mass, which is discussefl in Secthn 3.5
and in more detail later. The equation of motion for a point charge in the

vacuum is therefore
myk = Tm X —6mx + eEo(t), (5.2)

where 7 = 2¢2/3mc®,m, is the “bare mass,” and E,(t) is the source-free,
vacuum electric field operator. Thus we have

m(x) = Tm(X) (5.3)

for the vacuum expectation value of x, where m = m, + 6m is the ob.served
particle mass. This equation has the same fon.n as the cla:ss1ca1 equatlor} flor
a point charge in the vacuum. If a force Fext is also applied to the particle,
then the classical equation of motion is

m(x — 7 X) = Fext - (5.4)

We will for now restrict ourselves to the classical npnrelativistic theory of
a point charge. The equation (5.4) of this theory is called the Abraham-
equation.
Lorffn}f: c({a.ssical theory of radiation reaction ‘leading to. the Abraham-—
Lorentz equation has the peculiarity that the t‘hll‘d der‘lvatlve. c?f X appears.
This means that the particle motion is determined by its position, velocity,
and acceleration at time t = 0. This is in markgd contrast to ‘tbe usual
situation in classical theory, where the initial po'sitlons and velc.)c1t1e‘s a1<l)1ne
determine particle trajectories. If Fex, = 0, for instance, (5.4) implies that

the acceleration a(t) = X(t) grows exponentially:
a(t) = a(0)e!/™ . (5.5)

This is a so-called runaway solution of the Abraham-Lorentz equation. The
runaway problem persists when Fey # 0:

a(t) = [a(0) — ;‘17 / t dt'Fex(t)e " T)e!” . { (5.6)
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Here, a(t) eventually increases as e'/™ unless the initial acceleration a(0)
has the particular value

1 [ , |
=— [ dt'Fen(t)et/" :
a0) = o [ dtFe(t)e ), (5.7)
in which case the solution of the Abraham-Lorentz equation is
a(t) = L / ~ aF (e = L ["ar (' + )=t/ . (5.8)
mr J, ext mr J, ext T

Dirac (1938) proposed the particular initial acceleration (5.7) as a way of
avoiding runaway solutions of the Abraham-Lorentz equation. The solution
(5.8) is physically very peculiar: the acceleration a(t) depends on the force
Fexe(t +t') at times greater than t. That is, the particle anticipates future
variations of the applied force. This disturbing feature of classical radiation
reaction without runaways is called preacceleration.

Although preacceleration doés not seem to make good physical sense,
it is not as a practical matter an observable phenomenon. The time 7 (=
6.3 x 10724 sec) is so short that for realistic variations of the applied force,

1 oo ' 1
a(0) % —Fou(0) /0 dt'e¥1" = ZFen(0) (5.9)

and
a(f) = %Fm(t), (5.10)

which is the acceleration predicted when radiation reaction is ignored. Here,
T is on the order of the time it takes for light to propagate a distance equal
to the classical electron radius (r, = e?/mc? = 2.82 x 10~!* cm); more
generally it is roughly on the order of the time it takes for light to propagate
across an elementary particle. Therefore we cannot expect the “acausal”
preacceleration in the solution (5.8) of the Abraham-Lorentz equation to
have any observable consequences.

And more important, classical theory itself breaks down at distances
and times down to r, and 7. If we could turn on a force Fey in a time
on the order of 7, we would have an uncertainty in energy on the order
of AE =~ k)T = hmc3/e? = a~!(mc?) = 13Tmc?. Thus the energy uncer-
tainty associated with such a small time scale exceeds the electron’s rest
energy, and distinctly quantum effects cannot be ignored. A force with
such rapid time variations would have frequency components large enough
to produce electron—positron pairs, and the very idea of a single classical
clectron becomes irrelevant (Chapter 9).
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It is interesting to note that Dirac (1938) suggested that preacceleration
might be associated with a failure of the theory when applied to the interior
of the electron, that perhaps “it is possible for a signal to be transmitted
faster than light through the interior of an electron. The finite size of the
electron now reappears in a new sense, the interior of the electron being a
region of failure ... of some of the elementary properties of space-time.”
However, Wheeler and Feynman (1945) considered a macroscopic situation
where charges are packed together with separations = r, and found that the
time scale of preacceleration is substantially decreased compared with that
in the case of a single charge. They concluded from this result that “it is
misleading to attribute the phenomenon of preacceleration to an abnormal
velocity of light or to a failure of the usual conceptions of space-time in the
immediate neighborhood of a charged particle.”

5.3 Electromagnetic Mass

Another difficulty with the classical theory of radiation reaction is that
the electromagnetic mass ém turns out to be infinite. According to the

calculation in Appendix D,

bm =

4e2 [
dw. 5.11
37rc3/0 “ (611

Now the nonrelativistic theory used in obtaining this result breaks down
for frequencies approaching mec?/h. It might therefore be argued that we
should cut off the upper limit of integration in (5.11) with some frequency
Wmax & mc? /h, as in the nonrelativistic theory of the Lamb shift in Chap-
ter 3. However, this hardly solves the divergence problem, since the fully
relativistic theory also yields a divergent electromagnetic mass (Chapters
11 and 12).

One of the hopes of theorists at the beginning of the twentieth century
was that the mass of the electron would turn out to be entirely electromag-
netic. If we introduce a high-frequency cutoff Wmax in (5.11) and set sm
equal to the observed electron mass m, we find Wmax = 3rmc/ 4€?, or

2mc 862 8
- - = 1
Wmax 31"62 3 To (5 2)

Amin =

for the smallest wavelength of radiation interacting with the electron after
the cutoff.

The nonrelativistic equation of motion (5.4) was first derived by Lorentz
in the 1890s. He assumed that the electron is a rigid body with finite
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dimensions. In his theory (5.4) was obtained as an approximation in which
st.ructure-(.iependent terms were dropped. Since (5.4) was regarded onl o
an approyfm.lation, Lorentz was not concerned with runaway solutions T
The distinctive feature of Lorentz’s calculation is a series ex ansi<; i
powers of the retardation time across the assumed finite extent of It;)he ch:rég

e. The result, in terms of the velocit f
is (Appendix D) y v of the center of mass and charge,

2e? < An (a)n—l drtly

Frp = ——= S 2o 4 v
R 3c3 = n! \¢ dint+1 (5.13)

in the approximatio i i
n th n of dropping terms of second and higher order in v/c.

e e [@]"—Ip@op(x’), (5.14)

p(x) is the (spherically symmetric) char i i
is ge density, and a is a length -
acterizing the extent of the charge distribution. The coefficient gt char

1
A =—— / &3z’ / Pzp(x)p(x’) = -1, (5.15)
and
e? 1 '
4 =L [ g [ g3 PP _
2" 2/dz/dzlx—X’I =Y 19

is the electrostatic energy of the charge distribution. Thus

Frp = 4U dv 22 d’ v 2e2 ( a ) d3v

- — — + ——— e e | —
3c2dt ' 33 dt2 33 \2/ a3
If we assume that the char i i istri
ge e is uniformly distributed
of a sphere of radius a, for instance, then Y uted over the surface

1 [®/e\2 2
U=— = 2p = <
SWA (1’2) 4nredr = 5‘; (518)

and a = r, if we wish to have U ~ mc?, i, i i
o Ry , Le., if th
clectromagnetic in origin. 1 the mass e fo be totally
\ Tl.l: 5actor (4/3)U/c? in (5.17) is evidently the electromagnetic mass.
ov2v |F were the total self-energy, special relativity would require U =
mc*. For this reason the factor of 4/3 has historically been a source of

considerable discussion. One point of view holds that the very stability of

+ o (5.17)
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the electron requires there to be nonelectromagnetic, attractive forces act-
ing on it, the so-called Poincaré stresses. Then the mass cannot be totally
electromagnetic, and special relativity would require only that the tolal self-
energy and mass are related by U = me?.! Tt is worth noting, nevertheless,
that one can define a purely ‘electromagnetic self-energy-momentum four-
vector having the correct Lorentz transformation properties (Kwal, 1949;
Rohrlich, 1960; Jackson, 1975).

The second term in the series (5.17) is the Abraham-Lorentz force,
mrX. This term is independent of the assumed distribution of charge. The
third and higher order terms in (5.17) all vanish in the limit @ — 0 of a
point charge. The electromagnetic mass term, however, varies as a1, and
diverges in the limit of a point charge.

In QED the electron is viewed as a point particle. There is no ex-
perimental evidence of any internal electron structure. However, quantum
fluctuations act in effect to spread out the point electron (Chapter 11). As
. recalled in the preceding section, classical considerations collapse at very
small scales of time and distance. These scales are of order At ~ h/mc?
and Ad ~ h/mc = A, the electron Compton wavelength divided by 27.
And ). is much larger than the classical electron radius:

e h/mc he

e == -1~ 137. .19
ro  €2/mec? € o 3 (5.19)

Therefore, if we make a classical model of an electron in such a way that the
mass is totally electromagnetic, so that the electron radius = r,, we are at-
tempting a description on a distance scale much finer than quantum theory
deems sensible. Any attempt to localize the electron within such a short
distance would involve such a large uncertainty in energy that electron-
positron pairs can be created, and again the notion of a single classical
electron loses relevance. Pais has remarked, perhaps with some exaggera-
tion, that? “The investigations of the self-energy problem of the electron
by men like Abraham, Lorentz, and Poincaré have long since ceased to be
relevant. All that has remained from those early times is that we still do
not understand the problem.”

The infinite electromagnetic mass of the point electron is often invoked
to reconcile the existence of runaway solutions with the conservation of
energy: the indefinite increase of the electron kinetic energy in a runaway

11t should be borne in mind, of course, that the theory just outlined is nonrelativistic.
See the interesting historical remarks near the end of Section 28-3 of Feynman, Leighton,
and Sands (1964).

2A. Pais, ‘Subtle is the Lord .. . * The Science and the Life of Albert Einstein (Oxford
University Press, New York, 1982), p. 155.
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mode comes at the expense of the infinite self-energy of the electron. How-
ever, .‘:.lll that is really necessary to reconcile runaway solutions with con-
.f;ervatlop of energy is the fact that the nonelectromagnetic, bare mass m

is negative. Indeed the principle of energy conservation applied to the fre(o-:
electron involves the bare mass; the total energy is the (positive) energy of
the field plus the (negative) kinetic energy associated with the bare mass

An'accelerated motion of the electron implies a continually decreasing ki;
petnc energy associated with the bare mass, and therefore a continually
increasing radiated energy, as occurs in the case of a runaway mode (Cole-
man, 1961). The fact that the bare mass is negative is obviously peculiar

bu‘t it prevents any contradiction between conservation of energy and thej
existence of runaway solutions of the Abraham-Lorentz equation. We shall
see la'ter that runaways occur in classical theory only if the bare mass is
negative.

Runaway solutions, and the divergence of ém in the point-charge limit
also plague the classical relativistic theory of radiation reaction. The divér-’
gence of ém is sometimes regarded as a failure of classical electrodynamics
(Feynman et al., 1964). However, the electromagnetic self-energy of an elec-
tron also diverges in QED; the divergence there is “swept under the rug” by
mass renormalization.® Mass renormalization in classical electrodynamics
makes it no worse off in this regard than QED.

One problem that seems peculiar to the classical theory is that a non-
runaway ‘solution of the relativistic Lorentz—Dirac equation for radiation
reaction is not necessarily unique (Baylis and Huschilt, 1976).

There have been attempts to modify the classical Maxwell theory by
the‘ adoption of boundary conditions different from the “logical” one in
which only retarded fields are allowed. Dirac (1938), before the invention
of renormalization, proposed to eliminate the divergent self-energy by using
not the usual retarded fields but rather half the difference of retarded and

advanced fields. The advanced reaction force may be obtained from the
retarded force

AU d?x 22 d3x  2¢? 4
Fret — M € [/a d*x
RR 3 ¢2 di2 + 33 di3 333 (2c) vy + .. (5.20)
by the replacement ¢ — —:
pody _ _AUdx 22 Px 2 (ay  dix
RR = 73242~ 33 di® 38 (52) 2ggm T (5.21)

3 Y -
‘ Il? relativistic QED the divergence of §m is weaker than in classical theory — loga-
rithmic rather than linear, see Chapters 11 and 12.



162 Interlude: Radiation Reaction

so that
_ 2
T 3c3 dt?

This boundary condition thus preserves the X term required to damp the
particle motion in a way consistent with the loss of energy to radiation (Ap-
pendix A), while eliminating the (divergent) self-energy. In this approach
there is no electromagnetic mass.

The “absorber” theory of Wheeler and Feynman (1945) offered a phys-
ical basis for Dirac’s somewhat arbitrary choice of boundary conditions.
In this classical theory there is fundamentally no radiation reaction at all:
point charges interact only with other point charges, not with themselves.
The interaction between charges is assumed to occur via half the retarded
plus half the advanced fields. The radiative damping term proportional
to X appears as a consequence of the absorption of the outgoing field of a
charge by the rest of the universe. In particular, in this theory a charge
that begins to accelerate is acted upon by a force from charges that will
in the future absorb its outgoing radiation. Wheeler and Feynman went
to considerable pains to show with specific models that this theory is a
physically consistent one. As in Dirac’s theory, there is no electromagnetic
mass and no need for mass renormalization.

It was originally hoped that a quantized version of the Wheeler—Feynman
theory would also be free of infinities. Unfortunately, the theory has eluded
canonical quantization because it cannot be formulated as an initial-value
problem. Furthermore it is presently believed that electromagnetic mass,
which does not appear in the Dirac or Wheeler-Feynman theories, is nec-
essary to explain mass differences such as that between the neutral and
charged pions.

«But we still do not know what causes the electron to weigh.”*

%[Fg;{ _FRY (a—0). (5.22)

5.4 Does a Uniformly Accelerated Charge
Radiate?

This perennial question arises from the observation that the rate at which
an electron with acceleration a radiates is given (nonrelativistically) by
the Larmor formula, 2¢2a?/3¢3, while the radiation reaction force in (5.4)
is 2¢2a/3c®. If a is constant, therefore, the electron apparently radiates
without any radiation reaction force to account for its energy loss. That is,
if a uniformly accelerated electron does indeed radiate, there seems to be a

4 A. Pais, “Subtle Is the Lord .. .," p. 189.
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conflict with the conservation of energy. One might be led to the conclusion
that a uniformly accelerated charge does not radiate.’

The argument against radiation based on the presumed violation of
energy conservation is simplistic and incorrect. Multiplication of both sides
of (5.4) by v = x yields

Fext 'V = E(imvz)—m‘rv v
_od 1, 2%, 2%d
7™ )t 3EY “3Ea(v (5.23)

Nov!r the simple “derivation” of the radiation reaction force in Appendix A,
for instance, assumes that the motion is periodic, or in any case such that
tge last term on the right in (5.23) may be ignored. That is, it is assumed
that
azzi(v-a)—v-\"r

7 (5.24)
may bfa replaced by —v -v = —x- X . In general, however, and in particular
for uniformly accelerated (hyperbolic) motion, the term d(v - a)/dt is not
zero, and

2 . 2%d 2¢?
. = —Y - - —— . — — 2
FRrr v 33’ 2= 33 dt(v a) 332 - (5.25)
Thus, for constant acceleration a, Fgr = 0 and
2¢? al = 2¢? d
B2 T 3a g a), (5.26)

so that the radiated power is not zero in spite of the fact that the radiation
reaction force is zero.

The “Schott energy” (2¢2/3c®)(v -a) has been interpreted either as part
of the internal energy of the charge (Fulton and Rohrlich, 1960) or as part
of the energy of the field in the immediate vicinity of the particle (Coleman
1961). It arises from the interference of the “velocity” and “acceleration”’
fields of a point charge.

It is now generally accepted that a uniformly accelerated point charge
doe§ radiate and that the radiation does not contradict the fact that the
radiation reaction force vanishes during uniform acceleration. It has also
been. shown that the fact of radiation does not contradict the Principle of
Equivalence in the general theory of relativity: an observer falling with a
charge in a uniform gravitational field will detect no radiation, but only an
electrostatic Coulomb field (Fulton and Rohrlich, 1960; Coleman, 1961).

5This conclusion was reached for different reasons b; i
) . y Pauli, von Laue, and others.
See Fulton and Rohrlich (1960) for some of the history of work on this question.



164 Interlude: Radiation Reaction

Among the quantum effects ignored in the (classical) felectron the(?ry
considered up to this point is the possibility, noted earlier, of creating
electron—positron pairs out of the vacuum. There is another quantum
feature that has been ignored in connection with a uniformly accelerated
charge, namely the Unruh-Davies effect, the fact that th.e. vafcuum for a
uniformly accelerated observer appears as a thermal equilibrium field of
temperature T' = ha/2mkc (Section 2.10). The fact that the vacuum ap-
pears in the instantaneous rest frame of a uniformly accelerated charge
to be a thermal bath implies that there is no net transfer of energy and
momentum with the perceived field; this is consistent with the facts that
Frr = 0 and that the field produced by the charge is Coulombic (nonra-
diative) in its instantaneous rest frame (Sciama, Candelas, and Deutsch,
1981). .

The thermal field perceived by the uniformly accelerated charge im-
parts momentum fluctuations to the particle, just as in the Einstein—Hopf
model discussed in Chapter 1. If the particle does have an exactly constt.mt
acceleration, therefore, the external force responsible for this accelerat.'.lon
must itself fluctuate in such a way as to compensate for the ﬁuctuat‘xons
in the thermal bath. If, on the other hand, the external force were stFlctly
constant, the fluctuations of the thermal field would produce: nonuniform
acceleration of the particle and so lead toa damping of its motion; the com-
bination of this damping and the fluctuations would be expected t..o le'ad,
as in the Einstein—-Hopf model, to a steady-state momentum distribution
appropriate to the temperature T (Sciama et al., 1981).

5.5 Remarks

Consider an electron in a spatially uniform electric field. The nonrelativistic
equation of motion, including radiation reaction, is

%— 7%= ;‘;-E,,(t). (5.27)

Suppose we regard the radiation reaction force as a small perturbation, so
that x = (e/m)E,(t) in the first approximation and

1 ,

% = —E,(t)+—fr , (5.28)
m m

TeE,(t), (5.29)

frRR

in the next order of approximation. Now we ask under what conditions frr
is in fact small compared with the applied force eE,.
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Suppose E,(t) is sinusoidal, so that E,(t) = Ae~ ! and frr = —iwTe

X Ae~** Then
wre 1\ wi,

But classical theory is inapplicable when w is so large that wi./c = 1,
and so we can conclude from (5.30) that the classical electron theory is
inapplicable unless wr << 1, i.e., unless the radiation reaction force is
small compared with the external force. Ginzburg (1979) writes that

frRr
eE,

A lot of trouble has been taken to prove that it is possible to apply
[equation (5.4)] and its relativistic generalization as an exact equa-
tion where one imposes some additional conditions, for instance, to
remove the [runaway)] solutions. Apart from anything else it is ob-
scure why all this is necessary. We do not know any classical problems
where the radiation force (in the frame of reference in which the elec-
tron is at rest) cannot be considered to be a perturbation. The idea
of a classical point particle is inconsistent, and the construction of
‘elementary’ particles must be solved including quantum effects.

The assumption that the radiation reaction field is a small perturbation
has already been used in the theory of spontaneous emission and the Lamb
shift in Chapter 4.6 The principal approximation there, either in the form of
the Markovian approximation in the Heisenberg picture or the Weisskopf—
Wigner approximation in the Schrédinger picture, is that the atom is only
slightly perturbed by the radiation reaction and vacuum fields.

What if we could solve the quantum theory of radiation reaction ezactly?
Would there be runaways and divergences? Some interesting progress in
this direction is discussed in Section 5.7.

5.6 Extended-Charge Theories

While the classical electron theory may be considered ultimately irrelevant
from the standpoint of quantum theory, it is obviously of great interest
nonetheless. It is important, if only for historical reasons, to know what
modifications of the standard classical theory might make it more sensi-
ble when it comes to radiation reaction. We have already alluded to the
Wheeler-Feynman absorber theory. Another modification is to reject the
very notion of the classical electron as a point charge.

®Recall the discussion near equation (4.114).
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Suppose the electron is regarded as a spherical shell of charge of radius

a, so that .
o) = omzbz—a) (== IxD. (5.31)

Then all the coefficients Ap in (5.13) may be evaluated explicitly:

n-1
e e
Ay = (--e—t,)—/413:cp(:l:)47:a2 /ds:c'é(a:’ —a) [-—;—-]

%):Z:_a; / d3:¢:p(z)(27raz)2(""1)/2

x ] d¢’ sin @’ (1 — cos gy(n-1/2
0

(=2 (5.32)
n+1’
and
2¢? o= (—2)" a n-1 dntly
Fre = '@;(nﬂ)!(c) dtn 1
22 [edv 1 fc\2 2a 2adv)]
= = 2= (= =2 _vit)+==-)1|-
= 3c3[adt 2 a) ("( o) YO+
: (5.33)

Using this result in the equation m,Xx = Fgrr, with x the center of mass

coordinate, we have the delay-differential equation

‘= = 2a Zadv 5.34
m¥ = 35 [v(t - -?) —v(t) + | (5.34)
where the observed mass
2e? cr 5
m=m,+ém=m, m=m0+m(a>. (5.35)

We can write (5.34) in the form

(1) = € [i(t - ?Cf) - :'c(t)] , (5.36)

where

=

1-cr/a

_ (c/2a)(ct/a) ' (5.37)
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The electromagnetic mass dm appearing in (5.35) is the same as that
implied by (5.17). Similarly (5.34) reduces to the Abraham-Lorentz force
in the limit @ — 0. Equation (5.36), however, is applicable for all a > 0;
i.e., it describes the motion of a nonpoint electron under the action of its
own radiation reaction field.

Unlike the Abraham-Lorentz equation, (5.36) does not involve the third
derivative of x with respect to time, unless of course we make a Taylor
expansion of x(t — 2a/c) in powers of the retardation time 2a/c. Such
an expansion brings in all the derivatives of x(t), as in (5.13). The main
question before us is whether (5.36) with a > 0 has substantially different
properties than the Abraham-Lorentz equation.

Equation (5.36) for a uniformly charged spherical shell was derived by
Bohm and Weinstein (1948), among others. Herglotz, and much later Wil-
dermuth (1955), also considered the spherical shell model, and from their
work it follows that there are no runaway solutions unless the bare mass m,
is negative. As emphasized by Erber (1961), this “Herglotz-Wildermuth
theorem” also reveals the point-charge limit a — 0 as the root of the
runaway solutions, for the finite and positive value of the observed mass
m = m, + ém, with ém — oo for a — 0, implies m, < 0.

The conclusion about the absence of runaways follows easily in the case
of a uniformly charged spherical shell described by (5.36) (Levine, Moniz,

and Sharp, 1977). Assuming a solution of the form x(t) = x,e*/7, we
obtain for A the solution A = 0 as well as solutions determined by

A —-2XafeT

== E[e -1]. (5.38)

Runaways are absent if the real parts of all roots A are negative. Let
A = (c7/2a)(p + iv), with p, v real, so that (5.38) becomes

p = gle #ecosv—1], (5.39)

v = —ge Fsiny, (5.40)
with .
a -

E\-- . A4

7=(5-1) (5.41)

Now since e #cosv — 1 < 0 for 4 > 0, equation (5.39) does not have a
positive solution for 4 when g > 0. That is, there are no runaway solutions
when a > c¢r. For a < ¢r, however, g < 0 and (5.39) always has a positive
solution for u with v > 0.

We conclude, therefore, that equation (5.36) has no runaway solutions
when the radius a of the uniformly charged shell is larger than cr = 2r,/3.



168 Interlude: Radiation React ion

Runaway solutions occur only for radii smaller than 2r,/3. In the latter
case the electromagnetic mass ém = m(cr/a) > m, and (5.35) implies
that the bare mass m, < 0, in agreement with the Herglotz—Wildermuth
theorem (Levine et al., 1977).

For most of the twentieth century the classical electron theory, based
on the presumption of a point electron, has suffered from the runaway and
preacceleration maladies, as well as the divergent electromagnetic mass. It
is seldom acknowledged that the classical theory is free of runaways if the
radius of an eztended charged particle is larger than the radius for which
its observed mass would be entirely electromagnetic.

It should be noted that the classical relativistic theory of a point charge
also has runaway solutions that are suppressed by the assumption of preac-
celeration. The relativistic theory of an extended charged particle has ev-
idently not been developed. Such a theory would be very complicated be-
cause the assumption of a rigid charge distribution as earlier is inconsistent
with special relativity.”

Consider solutions of (5.36) of the form x(t) = x.e~**. Since ém =
2¢?/3ac? for a uniformly charged spherical shell, and § = (c/2a)(6m/m.),
we obtain the formula

iy = s feeele - 1] (5.42
°= Jwca?l 42)
relating the nonelectromagnetic mass m,, the oscillation frequency w, and
the radius a of the spherical shell. The conditions for such an oscillatory
solution are m, = 0 and w = nwc/a, where n is an integer. Thus, in order
to have a purely oscillatory solution, the nonelectromagnetic (bare) mass
must vanish and the oscillation frequency must be an integral multiple of
wcfa.

These results were obtained by Bohm and Weinstein (1948). Note that
the Bohm—Weinstein «self-oscillations” are harmonic motions of the center
of mass of the extended charged particle and are not necessarily associated
with any internal dynamical properties of the charge distribution. The
quantized energy levels for the harmonic motion of frequency w are sepa-

rated by
he he 2 2
AE =hw =nr— 07| 5 me* = (400n)me (5.43)

if we take a ~ e?/mc?. The main point of the Bohm-—Weinstein work may
be appreciated from their remark that “the energy of the first excited state

7]t is well-known that the concept of a rigid body, throughout which physical in-
formation can be transmitted instantaneously, is prohibited by the special theory of
relativity.
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with n = 1 is not far from the rest energy of a = me i

then suggests itself that perhaps some kimgis);’ of mesons :(r): r;a;i‘llgl::icliizg
states of the electron. The decay from one kind of meson to another, or
frorp meson to electron would then correspond simply to the loss of ;;his
exc'lta.tlon energy.” Needless to say, this suggestion can no longer be taken
seriously. Contemporary theory holds that the m-mesons are composed of

quarks, while the electron is treated in QED cal i i
. ' culations as
particle with no “self-oscillations.” " pute point

5.7 The Moniz—Sharp Theory

'Il‘lhe finite electromagnetic mass and the absence of runaways in the classical
theory of an extended charge suggest that it might be very interesting to
sTt;ll.dyhthebquan(tium t{:eory of an extended charge and its point charge limit
Chis has been done by Moniz and Sharp (1974, 1977) fo ivistic,
rigid, spherical charge distribution. ( ) for  nonselativistic,
Moniz and Sharp begin their analysis with the following Heisenberg

equation of motion for the (mean) positi i
position operator R of 1
e donsity o p of a particle with

moR(t) = eE,(R(t),t) - %i (=L" /d3z/d3x’

nlen
=0 ¢

1 143
3 [pbx— RO S0 640
+

where E, is the source-free (vacuum) field and the anticommutator [A, B]4+ =
AB + BA Except for the symmetrization implied by the anticomml,ltat:)r—
the radiation reaction field implied by (5.44) is basically of the same fornt:

as the classical expression (D.17) of Appendix D. In (5.44)

J(x,1)

I

1 .
2p(x — R), R, = plx ~ R)R ~ 3{o(x ~ R), R]

= px-R)R- 2; [o(x - R), P]

= p(x-R)R - %—VRP(X -R)

3 . ik

= p(x—-R)R+ T Vxp(x — R). (5.45)

Consider the n = 0 term in (5.44). We have

8 1 ]
By Lo . Op. ih _
E (x,t)_ 'h[J,H]._p(x_R)R-i——a R+—2 on'—'-ap . (546)
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If. as in the classical calculation of Appendix D, we dr?p terms nltl)nl'melzl).r
in’ R in this nonrelativistic theory and use the 'assumptlon of asp elt-;lcat,;hy
symmetric charge distribution, then only pR in (5.46) contributes to the

n =0 term in (5.44):
(moR)nmo = — [335 / o / daz'f(_"—)”—(i'l] i, (5.47)

|x — x'|

in agreement with the n = 0 term of the classical calculation of Appendix
D. Similarly the n = 1 term may be evaluated to give
(moR)n=1 = '3—03 R, ( . )
i i = lassical theory.
in agreement with the n = 2 term of the ¢ . ‘ ]
giﬁ'erences between the classical and quantum f,heone's arise from non
vanishing commutators, and the lowest order in which a difference not non-

linear in R emerges is at n = 2:

(moR)o=z = = [51—4 / & / d3w'p(x)p(x')|x_x'|] R

_ [;.:_2 (%%)2 / daa:pz(x)] R. (5.49)

It is the second term on the right that represents the quantum coFrect;‘lont ltlo
the classical n = 2 term. This term modifies the clfa,ssxcal expresglc‘:'n ord.u:
electromagnetic mass ém implied by (5.47). lf a is a cha:racterr:s ic 2'312 /102
of the charge distribution, then the quantum correction 1s ~ ( / rr:o )/
times the classical m and is small if a >> h/m?c. ‘In the pomd-f: a; hgis
limit @ << h/m,c, however, the quantum coFrectlon is large., an duslh !

case one must account as well for all terms with n > 2 Mom.z aln L aj {)1
obtain the following expression for the electromagnetic mass including a

quantum corrections:

2 20 a) 0
- 2 (142 2 a,, (5.50)
bm = 32 (1+66A) (H )

2p [~ ki) (5.51)
8 = ;FP/O T— k4’

A = h/m,c is the Compton

Cauchy principal part, .
where P denotes the y P d j is the Fourier transform

radius defined in terms of the bare mass m,, an
of x (Appendix D).
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If)— 0,
bm= 2 /0 kR (k) | (5.52)

which is the classical result given by equation (D.21) of Appendix D. If,
however, we first take the point-charge limit g(k) — 1 with A fized, then

2 o dk
Q, — ;P[) m =0, (553)
so that the electromagnetic mass vanishes. That is, according to Moniz and
Sharp, “the infinite electrostatic self-energy which occurs in the nonrela-
tivistic classical calculation has no counterpart in the quantum theory.” It
is worth stressing, however, that for typical choices of p(x) for an extended
electron, such as a Yukawa form, the mass formula (5.50) gives results that
are qualitatively and quantitatively reasonable (ém ~ am); ém = 0 holds
for point particles.

Moniz and Sharp also find that, for the physical value of the fine struc-
ture constant, there are no runaway solutions of the Heisenberg equation
of motion for R, nor is there any preacceleration. This might perhaps have
been anticipated from the classical theory of an extended charge, where
runaways occur only if the bare mass is negative. However, the absence of
runaways in the Moniz—Sharp theory holds for the point electron; the ab-
sence of runaways in their theory is therefore not so tightly coupled to the
value of m. (In the quantum theory even a point charge has an effective
extent ~ A., as noted earlier.) Note also that in the case ém = 0 found by
Moniz and Sharp, the bare mass mg = m > 0.

As already described, the Moniz—Sharp theory gives different results
depending on which limit, 5 — 0 or the limit of a point charge, is taken first.
The classical limit A — 0 is singular in the sense of singular perturbation
theory — the limit of the solution of an equation is not necessarily a solution
of the limit of the equation.

The Moniz—Sharp results have been described as “most amazing” (Rohr-
lich, 1975) and “striking” (Pearle, 1982). However, it is not clear at this
time what implications these results might have for specific observable ef-
fects, in particular the Lamb shift, for which mass renormalization is em-
ployed in standard, perturbative QED. The nonrelativistic electromagnetic
mass obtained in perturbation theory is given by equation (3.59) as

4e? [ dw

6m=37rc3 o 1+wAc/2C,

(5.54)

where A\, = h/mec. (The term involving A, in the denominator appears
only when retardation is included; without retardation we obtain the usual
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linearly divergent ém of the nonrelativistic theory.) Thus the Moniz—Sharp
result (5.53) does not reduce to the result (5.54) of standard perturbation
theory. This is not terribly surprising, as the Moniz—Sharp theory is not a
perturbative one. It does, however, illustrate the fact that the comparison
with standard QED calculations, even the simpler, nonrelativistic ones, is
nontrivial.

A serious concern with either (5.53) or (5.54) is that their interesting
features are produced by frequencies w > ¢/ = mc? [h, where the nonrel-
ativistic theory is inapplicable. In particular, (5.53) vanishes only because
such frequencies have been retained. At the present time, therefore, more
work is required before we can say exactly what the Moniz—-Sharp results im-
ply about conventional mass renormalization theory. However, as discussed
in the following section, it is possible at least to see where the theory differs
from an older quantum treatment of an extended electron by van Kampen.

With regard to runaways and preacceleration, it is worth noting that
Moniz and Sharp have shown that these do not occur when an external
force is applied, if the force changes by only a small amount in a time /¢,
i.e., if the frequencies w in the spectrum of the force are less than w < ¢/ Ac.
The model becomes inconsistent, in the sense of permitting runaways, if
w > ¢/Ac. We refer the reader to Sharp (1980) for a more detailed overview
of the Moniz—Sharp theory. '

5.8 Van Kampen’s Thesis

Kramers, who perhaps more than anyone else emphasized the distinction
between observed and electromagnetic masses and the necessity of mass
renormalization, felt that point-electron. theories “violate the spirit of the
original classical theory.”® He “never believed that the quantum theory of
radiation, accepted since 1928, was anything but a first and crude approx-
imation ..." and

. [his] whole philosophy was based on the belief that a necessary pre-
" requisite for the understanding of electromagnetic phenomena was a
removal of the difficulties and ambiquities in the classical theory of
electrons. It was for that reason that he had introduced the separa-
tion of external and proper (self) fields. It was in this process that

“he stressed the important distinction between experimental mass and

8Dresden 1987, p. 377. Dresden (p. 391) points out that “the motivation for a good
share of the procedures employed [in the Schwinger-Feynman-Dyson QED)] was due to

Kramers.”
91bid., pp. 384-385.

Van Kampen’s Thesis 1'%3

obse.rved mass. Tl}e analysis of the classical problem led Kramers to
the important notion of a structure-independent theory.

i A.n a;?proximately structure-independent theory, starting from a charge

;stnbutlon’ for an extended electron, was developed in the 1952 thesis
;){ Kram’er§ s student, van Kampen (1951). Van Kampen showed that
: ramers’s 1fiea of a s.tructure-independent quantum theory of electrons in-
tfar?,ctlfmi w1§1 radiation could be consistently formulated, at least nonrela
ivistically. Here we will briefly describe this , it wi .
Mot St thoons. ’work and compare it with the

The theory proceeds from the Hamiltonia

1 —_
= m, [P - eA(R)]2 +V(R) + Siﬂ_/ds:c [E2 +(V x A)?], (5.55)

where R and P are the elect iti i
e ron position and momentum, m, is the bare

¢eA(R) = /d3a:p(x -R)A(x) = /ds:cp(x)A(x + R), (5.56)

with p(x) being the .cha.rge density for the electron. (Following van Kampen
we put ¢ = 1.) An important approximation is made at the outset: ’

AR) = /da:cp(x)A(x) = A(0). (5.57)

.Thls‘ is in effect the dipole approximation, the assumption that the vari
tions in the electron coordinate R are small compared with the signifi a;
wavelengths of the field (Section 4.3). The fields E and A in (g 55)can
tl:ansyerse, with the potential V' assumed to contain the effects of .the l:re
gitudinal field Ell in the Coulomb gauge (Section 4.2). In the approximati:r-l

(5.57),
. . 1 _
P=- = —
VRV, R= - [P - €A(0)] . (5.58)
The charge density p(x) is taken to be spherically symmetric, so that

lt S conve ellt to €. a.lld 1mn mo deS a) (o) te tO a large s ere o
) ppl‘ pl‘la. l l'g h T f

AR =TS \/% NSkt (5.59)
n=1

r

:vhere k,,. = nn/ .L, q, is the coordinate operator for the harmonic oscilla-
or associated with the field mode n, and Tr means “transverse part of.”
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Similarly the transverse electric field is

E(x) = _nz\/— ns“"“ ., (5.60)

n=1

where p,, is the momentum canonically conjugate to q,. From (5.57) it
follows that the vector potential at the position of the electron is

A(0) = % chq,. : (5.61)
n=1

€n = \/-4—41r/ drrp(r)sinkn,r . (5.62)
" 3L Jo

In terms of the canonical coordinates and momenta (R, P and Qn,Pn), the
Hamiltonian (5.55) is

00 2
1 ., 1S p _1_[ . ]
= —— V R _— - qun + quﬂ
H 2m, P+ V( ) m, nz_-_:l 2m, ”Zﬂ
4+ 2(p,.+k Q?). (5.63)

n..l

2 _
The third and fourth terms correspond to the usual A - p and A“ interac

tions, respectively. ‘ ‘ .
It’ is convenient to transform to new canonically conjugate variables

R’,P’ and g, pn defined by

np! 5.64)
R = R- —=Ppn > (
nzﬂmk}. n
p = P, (5.65)
qQ, = Gn-— mkzP’ | (5.66)
P, = Pn, (5.67)

in terms of which (5.63) transforms to

H = 21 Pl2+V(R’+E ) 2mo[ c,.q,,]
n

+ Z 2 4+ k2q?), (5.68)
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where

m = "‘°+ZZ—'§= a+——z (5.69)

n=1

b = \/: / drrp(r)sink,r . (5.70)

In the limit of a point electron, p(x) = e6%*(x), 6, — 1 and the electro-

magnetic mass
m=y & =2 iﬁz (5.71)
B k2 3L " :

diverges, as discussed later.

The third term in the Hamiltonian (5.68) derives from the A2 contri-
bution to the original Hamiltonian (5.55). Together with the last term, it
constitutes a contribution quadratic in the q),. H' can therefore be trans-
formed to the form

— 1 12 ' 4 cosq,, ” ”2 2 "2
H'= 3w +V(R+ ZV3L 22(1’ Kiay

(5.72)
by a principal axis transformation with q), = ", camq)y, and pj, =3, tam
x qit,. 7, and L,, are defined by

Kol = fa4nr, 0<p< % (5.73)

L, = L—crcos’n, =1L, (5.74)
and the K,, are the roots of a characteristic equation:
2

p— 2 Cﬂ
m=K E k;—:(I{z — k'zl) ’ (575)

which involves the assumed structure of the electron through the ¢,, defined
by (5.62). Once m is identified as the experimentally observed electron
mass, however, the structure of the electron affects the Hamiltonian H"
only through the values of the K,, and can be expected to have a small
effect on the physical predictions obtained with H”. That is, H” is ap-
prozimately the sort of structure-independent Hamiltonian long sought by
Kramers (Dresden, 1987).

In the limit of a point electron, 8, — 1 and we obtain from (5.71) the
electromagnetic mass

4¢? 4e? [ [ 4e2 oo
ém = 3L S—L; A dw — 37!’03_/0 dw (5,76)
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when we reinstate c in order to recover the electror.nagnet.ic mass (5.121! c;fl’
a classical, nonrelativistic point electron. In this limit, €, — knv/4€ /3

according to (5.70), and (5.75) becomes!?
m = KZ% i;l (nz,rz/pg:;fz/fznz,rz/m)
= K%‘%%;EL (cotKL - 737)
= 2—?1{ (cot KL- 7{1'13) : ; (5.77)

Since L can be taken to be large, this reduces approximately to
tan KL = %Kro , (5.78)

where r, is the classical electron radius (Sectio'n 52) —
The solution of (5.78) for K includes two 1mag21nlz};)f values, 1.e..1 , there
are solutions leading to terms of the form p"?—|K.|*qi* In tbe Ham}:.t;)lman
(5.72). For a free point electron, this leads to runaway s,?lutlon?l, w gc va;n
Kampen excludes by choosing the initial values of the p/ and q; to be zero.

With regard to the electromagnetic mass, note that, for a spherically

symmetric p(x),

bn

i

] k 1 ik,
-1-/dr47r1'2p(7‘)sm nl - —/ds.’cP(X)ek ¥
e k.t e

Lh(ka). (5.79)

Then

(o o]
'3—L- n=1
in the limit L — 0o, and this is equivalent to the classical result (5.52).

Van Kampen (1951) uses the Hamiltonian H” to trgat ai 1va,riety of pr9b-
lems concerned primarily with the scattering of radiation.’" In concluding

n 1.421 of I. S. Gradshteyn
(Academic Press, New York,

om = 2 (kn) — ;Z% / dkpi(k) (5.80)

10\We use the series expansion for the cotangent given i
and I. M. Rhyzhik, Table of Integrals, Series, and Products
0). N
19181 \)’an Kampen's transformations bear a familial resemblance to
ployed earlier by Bloch and Nordsieck [Phys. Rev. 53, 54 (1937))

transformations em-
and Pauli and Fierz
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our summary of his theory we will confine ourselves to a few additional
remarks about radiation reaction.

We note first that the radiation reaction field Agrgr can be defined, using
(5.59) and (5.66), by

3 e _,sink,r

Arr=Tr} Tl — (5.81)

implying that the ezternal field is

[3 , sink,
Aextle'Z _qasmr - (5.82)
n

From the definitions of ¢, and k,, it is readily shown that

/ 3.1 /
ARR-":TI'E' i.l_:p(—x)_
m Ix——x’l

(5.83)

Second, one can easily see that a Taylor series about R’ of the second
term in (5.72) will have a quadratic term involving cos?7,,. The mean—
square fluctuation in the electron coordinate resulting from the vacuum
field fluctuations associated with the p}’ will therefore be similar to that
calculated by Welton (Section 3.6), except that factors cos? 7, will appear.
This leads to the replacement of Bethe’s nonrelativistic Lamb shift formula
(3.24) by

E 2o (1 ® dE cos? n(E
AES® = I (g) lemnlz(En - Em)/o E,-,——Em-#(—l)? , (5.84)

which, owing to the factor cos? 1, is convergent. However, the effect of this
factor is to cut the integral off at roughly 137mc?, as compared with Bethe’s
mc?; not surprisingly, the convergent result for this nonrelativistic theory
does not agree numerically with the experimentally observed Lamb shift
(van Kampen, 1951).

Finally, it is easy to see where the van Kampen and Moniz-Sharp the-
ories differ: van Kampen makes the dipole approximation (5.57), whereas
Moniz and Sharp retain the R dependence in (5.56), leading to (5.44) under

[Nuovo Cimento 15, 167 (1938)]. These transformations all involve the modification of
particle coordinates by field variables, as in (5.64), and correspond physically to a “dress-
ing” of the particle by a virtual “cloud” of photons. In the more recent literature such a
transformation, the so-called Kramers-Henneberger transformation, has been employed
in the treatment of atoms in very intense fields.
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the appropriate symmetrization. This R dependence is obviously crucial to
the Moniz-Sharp theory. Without it, no nontrivial commutators involving
R and P ever have to be dealt with, and their results would have to be
physically equivalent to van Kampen’s.
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Chapter 6

The Vacuum in Quantum
Optics

... 1t appears that Quantum Mechanics is not a bad prepa-
ration for optics. — Dennis Gabor (1956)

6.1 Introduction

Quantum optics is the study of the interaction of radiation with matter,
especially under conditions where the field of interest is quasimonochro-
matic and resonant with some atomic or molecular transition, where the
nonrelativistic approximation is adequate, and where one is concerned with
questions of field coherence and photon statistics. In quantum optics one
is usually faced with different calculational and conceptual problems than
those of relativistic QED, and there are ample opportunities to compare
theory and experiment.

In this chapter we consider some examples of the role of the vacuum
field in quantum optics, chosen because of their fundamental importance
and because they involve no specialized concepts. Sections 6.2 and 6.3 deal
with the modification of the vacuum electromagnetic mode structure by
reflecting surfaces, and in Section 6.4 we briefly discuss the interaction of
an atom with a single mode. Both problems have been investigated exper-
imentally in recent years. Sections 6.5 and 6.6 show how the vacuum field
fluctuations contribute to the fundamental laser linewidth and to amplified
spontaneous emission. In the remainder of the chapter we give a cursory
overview of recent experimental studies of single trapped particles.

14> 4
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6.2 Spontaneous Emission near Mirrors

The quantized transverse vector potential associated with a single field
mode is given by equation (2.34). The multimode generalization is

[+

rhe2\ M2
A0 =Y (Z22) maa@ +alOAIE) OD

where

VZAq(r) + k2 AL(r) 0, k2=uwl/?, (6.2)
V- Aq(r) 0, (6.3)

i

and the mode functions A(r) are chosen to form an orthonormal set:

/darA;(r) . Ap(r) = 6aﬂ . (64)

As discussed in Section 2.4, the mode functions are ordinary classical vector
functions determined by the Helmholtz equation (6.2), the transversality
condition (6.3), and boundary conditions. The quantum properties of the
field are determined by the annihilation and creation operators aq(t) and
al(t) satisfying [aa(2), as(®)] = 0, [aa(2), al(®)] = bap

Thus far we have restricted ourselves mainly to the field in free space
(Section 2.5), in which case each mode « is characterized by a wave vector
k and a polarization ), and the mode functions are defined by (2.49) when
periodic boundary conditions are imposed.

The theory of spontaneous emission presented in Chapter 4 is trivially
extended from the case of free space to more general situations in which
the vector potential is defined by (6.1). When (6.1) is used the spontaneous
emission rate on a transition 2 — 1 of frequency w, is found to be

4n2w?
h

Aa(r) = Z ;1_|Aa(l') : d12|26(“’a ~ Wo), (6-5)

where, as in Chapter 4, d,, is the transition dipole moment. For the
free-space mode functions (2.49) we of course obtain A (r) = Az =
4|d;,|?w3/3hc3, the Einstein A coefficient. In general, however, the spon-
laneous emission rate varies with the position r of the atom.

Consider as an example an atom near an infinite, perfectly conducting
plane at z = 0. In this case the mode functions are those appropriate to
the half-space z > 0 bounded at z = 0 by a plane on which the tangential
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components of the elt?ctric field, and therefore the mode functions A, (r)
must vanish. To obtain such mode functions, we can combine a plane :vavej

with wave vector k = k; 2 7 z Z wi
i = k& + ko + k3Z = ky + k3Z with i
with wave vector k, = k" — k3% to form I a2 with its reflected wave

9 /2
Ay, (r) = (V) (Kyy x £)sin kze 1T (6.6)

which is normalized according to (6.4). Here V is once again a quantization

Volume, and a Cal‘et 18 used to dellote a ulllt VectOI. !;]lllllally we can fOI]ll
. .

Ay, (r) o (By x 5) x ke’®T 4 (k) x 2) x ke'krT (6.7)
or

N 1 /92\/? R
k2(r) = 7 (7) (k) £ cos k3z — ik3ky sin lc;;z]e’.k"'r (6.8)

after normalization. The vector functions (

on. 6.6) and (6.8) form a complet
set of mode f}mctlons for the half-space bounded by a conducting plarxl)eea(;
z = 0. Equation (6.5) with these mode functions gives

4miw? 2

) 21 [ . . ki
21(r) Y : o [|(k|| x 2) - dy[*sin® k3z + -I-cl—z“d“zcos2 kaz

+ 5518, ayein?
52 K - 4| sin® sz | 8(wi — wo), (6.9)

where we have written dijp =d 2 + d. & . .
Consider the contribution to A21(:) fro ni/ d.: 1Z2+dy=dyg +4dy.

47202 2 2
At = 0 2
5:(r) Va3 | |? zk:kﬁ cos® k3zb(wr — w,)

driw? 2 ?

V o0
s c 2
= Vwald'LI ﬁ/mdka/d2k||kﬁ cos? ksz

1
) 2
x =6(\[kF + 3 — ko), (6.10)

where k, = w,/c and we have
. gone to the usual mode conti imi
V — oo. Straightforward evaluation of (6.10) yields s Tt

AL (2) = 342, [l cos2k,z  sin 2koz]

37 ko) T (2ky2)? (6.11)
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for the spontaneous emission rate when an atom is a distance z from a
conducting plane. Here again Ay is the ordinary free-space spontaneous
emission rate. Similarly the contribution to Agi(r) from dy is found to be

il _ :3_ _2_ _ sin 2k, z _cos 2k,z sin2k,z
A“@)‘2“1L oz (ko) | (@RaR )

If the excited state is produced in such a way that all orientations of
the transition dipole moment are equally likely, then the emission rate is
the orientational average

Azl(z)

(6.12)

i

1 2

AR () + 340()

R PP sin 2k,2 _ 2 cos 2k, 2z + 2sin 2k, z
- o 2k,z (2k,2)? (2k,z)3

] . (6.13)

The modification of spontaneous emission rates by reflecting surfaces
has been observed experimentally. Experiments by Drexhage (1970, 1974),
for instance, involved the deposition of molecular monolayers on reflecting
plates. The distance of a fluorescing molecule from a plate could be fixed
according to the number of times the plate was dipped in a solution to coat
it with a dielectric layer before the monolayer was added. The emission
lifetime could then be monitored as a function of the distance z of the
emitter from the plate. The oscillatory dependence of the lifetime on z, as
predicted by (6.11)-(6.13), was confirmed. In fact rather good agreement
between theory and experiment was obtained by modifying the previous
idealized theory to account for effects such as the deviations from unity of
both the mirror reflectivity and the refractive index of the dielectric layer.

Drexhage’s results were at first regarded with suspicion in some quar-
ters: it was argued that no modification of a spontaneous emission rate is
possible, for how can the emission of a photon be affected by an atom’s
environment when the atom can only “see” its environment by emitting a
photon in the first place?

Such an objection is invalid. As long as the emission lifetime is large
compared with 2z/c, the atom has ample opportunity to “see” its environ-
ment. But it need not emit a real photon to do so. One way to think about
this is in terms of radiation reaction (Milonni, 1982). Using (6.1) and the
mode functions (6.6) and (6.8), we obtain for the z-component of Erg, for
instance, the result

2 .. ém ..
TR —B(t)
1

1 . 22 2z
- =Pt - =) — 7Pt - (6.14)
2cz c 4z c

zZ- ERR(Z,t) =
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atom image

a b

Figure 6.1: Two possible ways i i
: ys in which a photon can be emi i
mode by an atom near a mirror. emitted into the same

wherc.e p(t) is the 2-component of the atomic dipole operator. The radiati
rfea.ctlon elect',ric field operator thus has the same form as th(; classical: ae
tion field acting on a dipole near a mirror: it is just the free-space (z —>eac-
result plus the retarded dipole field from an image dipole at —z Ind::ci
the.br'acketed factors in (6.11)—(6.13) also describe the modification of th
radl?lon rate of a classical dipole near a mirror, in which case there is nz
3:;:;011 whatsoever that the rate should be modified from its free-space
197’3I‘he class3cal image picture has a quantum analog (Milonni and Knight
X ) C.ons‘lder the two processes shown in Figure 6.1. In the first thej
a ﬂ?n}i emits into the plane-wave mode (k, A) without reflection of the ,ﬁeld
off the mirror. In the second a photon is emitted with the same wave vect
and pola.rl.zatlo.n after reflection and can be considered to have been emitt:;
by a fictitious image atom. Thus we may describe the emission as comin
from a .tw.o-‘at‘om system, with complete uncertainty as to which of the t .
atoms is initially excited and capable of emitting a photon. The i itial
states incorporating such uncertainty are . © imital

[¥a) = = [12)al10 £ [Dal2)], (6.15)

wh(;artle A denotes .the actual atom and I its image in the mirror, and 2
:m 't.denote excnted.and unexcited states, respectively, of the e,mitting
ransition. The atom-image separation is 2z. The state |, ) is appropriate
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if the transition dipole moment of the atom is.norfna.l tf’ the mirror, slllnce
in this case the dipole can be thought of as osc1'llatlr.1g with the same g asle
as its image dipole. Similarly J-) is apperrlate if the'trans.1t10n 1ptohe
moment is assumed to be parallel to the mirror surface, in which case the
dipole and its image oscillate with a m phase difference. ' .
As in the case of an atom in free space, we can also interpret (6.11)
(6.13), at least partly, in terms of the action of the vacuum field on the atf?rﬁi
The “vacuum field” in this case is the source-free, zeFo-pomt quantum | t:a <
in the half-space bounded by the conducting plane, i.e., the field describe

by the vector potential

Y2 1 $wit A *
N (21::02) (a1, ()= A gy (1) + af, (00 A, (),

ka (6.16)

with the mode functions Ay, (r) defined by ‘(6.6) and (?8) Note that the
vacuum field in the half-space has a zero-point energy shwi per mod(}e‘, as
in the case of free space. The field operators such‘a.s (6.16), however, have
spatial variations different from those of tl}e field in unbognded freifspace.
It might also be noted that the quantizatlo.n of the field in thg ha —sp:}ie
leads automatically to retardation in the influence of the mirror on the
ilonni, 1983). ‘
ator\x;V?(/:I;l:r\l'iew the )experiments on the modification of spontianeous emis-
sion by a mirror as confirming that the vacuum electrorpagnetlc field has; 2
mode structure determined by the solution of the cl(fs:szcal electFomagne ic
problem defined by (6.2)—(6.4) plus boundary conditions. As in the‘cass
of unbounded free space, the quantum fe}z;z.tl;irelsdof the field are associate
i al. not spatial variations of the field.
w‘tg:::;pz; tile the:ry of Chapter 4, it can be anticipated tl}at the Lamb
shift of a transition is also modified by the presence of a mirror. In f:ct
the modification of the Lamb shift turns out to 'be just the Casu‘mr—Po er
interaction discussed in Section 3.12. This is discussed further in Chapter

8.

6.3 Cavity QED

Spontaneous emission near a mirror provides a simp}e example ott tf:amty
quantum electrodynamics, the study of the eﬂ'facts of mirrors and cavi 1‘esdo.n
radiative corrections. Another example that.lmmedxately comes to mmt is
spontaneous emission beiween mirrors. Consider then an atom be.tw.een v:z
perfect, parallel plane mirrors at z = £L/2. The spontaneous emission ra
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in this case may be obtained from equation (6.5) using the mode functions
(2.91)-(2.93) with L;,L, — oo but L, = L finite. For an atom positioned
at z = z, between the mirrors, and with transition dipole moment parallel
to the mirror planes, the spontaneous emission rate is easily calculated to
be (Barton 1970, 1987; Milonni and Knight, 1973; Philpott, 1973)

N 2.9
i _f 3= nw .3 (M2,  nw
A (2) = (2koL) A "E-l (1 + —ksz) sin (_L T ) , (6.17)

where Aj; is again the free-space emission rate and N is the greatest integer

part of k,L/x. For a transition dipole moment perpendicular to the mirror
planes, similarly,

n2x?

N
3n 1 T nwz, nw
AL (2) = (ﬁ) Az [5 +y (1 - kz_m) cos? (T - T)] . (6.18)
n=1 °

Note that for k,L/m = 2L/X < 1, where X is the transition wavelength,
Agl(z) = 0. In other words, when the spacing L of the mirrors is less than
A/2, the spontaneous emission rate at wavelength A should be completely
suppressed if the transition dipole moment is parallel to the mirror planes.
For an atom near a single mirror such a complete suppression is not possible
because the spectrum of allowed field frequencies is continuous.
Suppressed (or “inhibited”) spontaneous emission has been observed
using an atomic beam of highly excited cesium atoms passing between
mirrors separated by about 0.2 mm (Hulet, Hilfer, and Kleppner, 1985).

Before the atomic beam entered the cavity, an n = 22 state of cesium
was prepared by excitation with two dye lasers, after which the atoms
were put into a so-called circular state with |m| = n — 1, where n and

m are the principal and magnetic quantum numbers.! (The quantiza-
tion axis for the magnetic quantum number is defined by an applied elec-
tric field.) The circular state is such that the dipole moment for the
(n =22,|m| = 21) — (n = 21, |m| = 20) transition is parallel to the mirror
planes, so that substantial suppression of spontaneous emission could be
anticipated. The mirrors were separated by 230.1 ym= 1.02(A/2), where
A is the transition wavelength when there is no applied electric field. Ap-
plication of an electric field was used to Stark-shift the wavelength over
a tuning range AA/A = .04. The state of the atoms emerging from the
cavity was determined by field ionization, using the fact that the n = 21
and n = 22 levels have different ionization rates. A dramatic suppression of

1The circular state was obtained using an adiabatic passage technique. See R. G.
Hulet and D. Kleppner, Phys. Rev. Lett. 51, 1430 (1983).
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spontaneous emission transitions — by a factor > 90 — was observed when
the Stark-shifted wavelength was larger than 2L.

Much smaller mirror spacings have been used in experiments with near—
infrared transitions (Jhe et al., 1987). In these experiments a beam of
cesium atoms prepared in the 5d Jevel entered a cavity with spacing L=11
pm, so that the 5d — 6p transition wavelength of 3.5 pm was larger than
the cavity cutoff wavelength 2L = 2.2 pm. It was observed that the atoms
passed through the cavity for > 10 (free-space) radiative lifetimes without
spontaneous emission. The orientation of the transition dipole moment
could be varied with an applied magnetic field, and it was confirmed that
spontaneous emission was no longer inhibited when the dipole moment had
a component perpendicular to the mirror surfaces.

Substantial inhibition of spontaneous emission at optical wavelengths
has been observed using a microscopic piezoelectrically tuned cavity and
a dye solution (DeMartini et al., 1987). Both inhibition and enhancement
of spontaneous emission in the optical regime have been observed using a
spherical Fabry—Perot resonator (Heinzen et al., 1987). In this case the rate
of spontaneous emission into the solid angle subtended by the Fabry-Perot
was varied by tuning the resonator through different resonances.

We refer the reader to the reviews by Haroche and Kleppner (1989) and
Hinds (1990) for more information and references on experiments in cavity
QED.

The remarks near the end of the preceding section apply to cavity QED
in general. In particular, experiments in cavity QED may be regarded
as confirmations of the modification of the electromagnetic vacuum from
its free-space structure. It might also be noted that the image method
mentioned earlier may be used also in the case of an atom between mirrors

(Milonni and Knight, 1973).

Generality of Cavity QED Effects

All radiative processes, not just spontaneous emission and the associated
frequency shifts, can in principle be modified by reflecting surfaces and
cavities. Perhaps the simplest and most general way to appreciate this is to
note that the propagator D,y (z', z) for the electromagnetic field (Chapters
10 and 12) is determined by the modal properties of the field. In traditional
QED the field modes are taken to be the plane waves of free, unbounded
space.

Of course the use of classically determined mode functions presupposes
that the particles constituting the reflecting media and cavity walls act
simply to enforce the boundary conditions for the Maxwell equations. Ob-

R
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viously thi.s cannot happen if the particle densities are too low. The Ewald-
Osee.n extmc.tion theorem (Section 8.3) can be used to justif:y the mac
scopic, “_cavnty QED” approach in cases where, for instance, the at ms
co.nstlf;utmg a dielectric medium are approximated by a con’tinuous (();II:
:Ebztlon-. However, the “cavit)t QED” approximation of simply quantizing
the eld in terms of mode functions satisfying classical boundary conditi

is not always valid (Sections 8.4 and 8.5). Y e

. Then? is a similar situation in the case of an atom embedded in a diele
tric medium. .The spontaneous emission rate of the embedded atom mu:;
b.e calculat‘ed in such a way as to include the effects of its neighboring par
ticles, bu? in the continuum approximation to the dielectric we can S?I'le) l-
characterize the dielectric by a (complex) dielectric constant.? Then asPdy
fr'om local fjle'ld corrections, the spontaneous emission rate i'ot an e,lect;l ic
dipole transition i§ found to be approximately n(w,)A>;, where Ay isa ar.llr(i
::il;i i::et-ﬁpace err:;lss;Lor(l1 rate and n(w,) is the real part of the refr;ctiveg in-
e unperturbed transiti i

ot o ;I)J o o 19:)'21)1.531‘31011 frequency w, (Ginzburg, 1979; Barnett,
. An examp!e of a fundamental radiative process modified by cavities
is the cl.lange in the electromagnetic mass of an electron between parallel
conducting plates. The effect in the nonrelativistic theory turns ouI:, to bee

rather simple and not of i . .
therein). p of much interest (see Milonni, 1983, and references

6.4 Single-Mode Interaction

:n C}Ilhapter 4 we 1}sed the Hamiltonian (4.73) for a two-state atom coupled
o the field to derive the Einstein A coefficient for spontaneous emission. If

we take into account onl i
y the coupling of the atom t i
the Hamiltonian reduces to © @ single field mode,

1
H= §hwoaz + hwata + thCla + af][a' - o’t], (6.19)

whe.re., as in Chapter ‘4, we drop the A? term. Here a and al are the
annihilation and creation operators for the single field mode with which

the atom is assumed to int i i
the atom i eract, and C is the coupling constant for this

2The quantization of the field i
eld in the case of i i i
of :mys. One way is described in Section 7.?3.0 »lossy medium cam be done in a varicty
j‘nde: :;;ﬁ;:);::lllc(:vl:-:(:l t:f fzrmula)a :iori ;mission and absorption, including the refractive
. entz-Lorenz) field correcti is gi i i
Interactions in Solids (Wiley, New York, l96§;,l;fs;01;. given by B. DiBartolo, Optical
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In the absence of atom-field coupling the Heisenberg equations of mo-
tion for o(t) and a(t) have the solutions o(t) = o(0)e*t and a(t) =
a(0)e~*“!. If the coupling described by the last term in (6.19) is not too
strong, the terms ao and atol for w &~ w, will be rapidly varying in time
compared with the terms alo and aol. If we choose to ignore the very
rapidly oscillating terms, we can replace (6.19) by the RWA Hamiltonian
(Section 4.9)

HB,WA = %thUz + hwata + ihC(ata' - Utd). (620)

This has the effect of removing rapidly oscillating terms in the Heisenberg
equations of motion and is just another way of formulating the RWA intro-
duced in Section 4.9. Note that the RWA ignores “energy nonconserving”
terms; in the Schrodinger picture it leads to the essential-states approxi-
mation, as discussed in Section 4.14. Thus (6.20) describes the atom—field
interaction in such a way that an upward atomic transition is always accom-
panied by the annihilation of a photon ((7t a), and a downward transition
is always accompanied by the creation of a photon (cm)().4 The coupling
«“constant” C in general varies with position, as discussed in the preceding
two sections. For simplicity we shall not bother to indicate this explicitly.

The single-mode atom-field model described by the Hamiltonian (6.20)
is called the Jaynes-Cummings model (Jaynes and Cummings, 1963). There
are various ways to calculate quantities of interest in this model, such as
the dressed-state formalism originally used by Jaynes and Cummings (see
also Knight and Milonni, 1980). The most direct approach is perhaps via
the Heisenberg equations of motion for the atom and field operators. For
o, (t), for instance, one easily obtains

G,(t) + 2C%0,(t) +4C%a, ()N () = 0 (6.21)

in the case w = w, of exact resonance, where the operator

N() = %az(t) +al(t)a(t) | (6.22)

4The RWA is very often, but not always, an excellent approximation. For an atom
in an externally applied field, the RWA ignores the so-called Bloch-Siegert shift. See
L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover Books, New
York, 1987). The RWA does not take into accouni multiphoton processes, which become
important at large field intensities and at field frequencies near multiphoton resonances,
such as w & wo/3 for a two-state atom. For a collection of two-state atoms interacting
with the field, the RWA does not account for the fact that the semiclassical dynamics
may be chaotic under certain circumstances. See P. W. Milonni, J. R. Ackerhalt, and
H. W. Galbraith, Phys. Rev. Lett. 50, 966 (1983); P. W. Milonni, M.-L. Shih, and J.
R. Ackerhalt, Chaos in Laser-Matter Interactions (World Scientific, Singapore, 1987).
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is a constant of motion (in the RWA).
Suppose, for instance, that at £ = 0 the atom is in the upper state [2) and

the field is in the photon number ei
. genstate |n), so that at (0)a(0)|n) =
Then, for this assumed initial atom-field state |¢) = |2)|£1))a( im) = nie)

COND) = Wl5o:0o ) + {o:0)al ©)aO)lw)

1
(n+3)e=(0), (6.23)

and (6.21) gives
(02(2)) +4C?*(n + 1){0,(2)) = 0, (6.24)
with the solution
(o:(t)) = cos(2Cvn + 1)t . (6.25)

tl: ?}: recall frorn Ch‘apter 4 that o, = 095—0,; is the operator corresponding
o4 e populathq difference between the upper and lower states of the two—
state atom. Writing (o,(t)) = Pz(t)— Pi(t), where P, and P, are the upper-

and loweI-State o up on
cc a-tl probabllltles we Obt y
y ain from (625) the Ja nes

Py(t) = cos?(Cvn + 1)t, Py(t) =sin>(Cv/n + 1)t, (6.26)

and
(at(t)a(t)) = (N(0)) - %(az(t)) =n+sin’*(CvVn + 1)t (6.27)

V\Zill?nﬂnjz\lfv_ve }’i‘;:{e {at (t)a(t)) = nand ‘Pz(t) = cos® O, Py(t) = sin® O,
o = n. is is the solutlon. predicted by semiclassical radiation
eory, where the field is not quantized. The oscillation frequency Q i
called the qui frequency.® In this limit the atom is driven by an ay li 1;
field of effe§t1vely constant amplitude. Of course this is a limit in WhiI:‘,li')l l:r
expect ser.mc.lassical theory to apply, since if n >> 1 the changes n — n4+ 1e
due to emission and absorption are negligible compared with n, and the field
may as well be treated as a prescribed classical field with ﬁ’xed intensit
oc nn and electric field amplitude o« /7. i
" In the limit n - 0, on the other hand, semiclassical theory fails because
e standard classical treatment of the field does not account for the vac
uum field. In other words, semiclassical radiation theory does not properl)-'

5See, for instance, L. Allen and J. H. Eberly, ibid.
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describe spontaneous emission (see Section 4.15 and Milonni, 1976). In this
limit, for the initial atom-field state |¢) = |2)|vac),

Py(t) = cos® Ct, Py(t) =sin® Ct, (6.28)

(at (®)a(t)) = sin® Ct = Py(2). (6.29)

The atom—field coupling constant C is therefore effectively a so-called vac-
uum Rabi frequency. o

Of course equations (6.28) and (6.29) simply indicatf: .t.}?a.t an mltl_ally
excited atom can spontaneously emit a photon into the initially unexc1te'd
field mode, and that the atom and the field will sinusoidally ex.ch‘a.ngfa this
photon of energy. These results are simply the single-mode specialization of
the theory of spontaneous emission presented in Chapter 4, wherf—: the atom
was coupled to the infinity of modes of free space. As such, the single-mode
results do not say anything new about the vacuum. _

What is noteworthy is that in recent years it has become'possxble to
experimentally test predictions of the idealized J aynes—Cumml.ngs model.
In experiments of Rempe, Walther, and Klein (1987) a velocity-selected
beam of rubidium atoms was excited with laser radiation to. the 63p3 /2 level
and then passed through a superconducting microwave' c'av1ty operating on
a single mode at 21.6 GHz, near the 63p3/761ds /2 transn.lon frequency: The
damping rate for radiation in the superconducting cavity was sufficiently
small that the two-state “atom” consisting of the 63ps;2 and 61ds /2 levels
could interact with its spontaneously emitted photon. The at(?mlc beam
flux could be made so small (500-3000 atoms/sec) that only a single atom
at a time was present in the cavity, and the cavity field could relax back to
the 2.5 K thermal equilibrium between successive atoms. ‘

For T = 2.5 K the mean number of 21.6 GHz photons in a single mode
is 7 = (e"/*¥T —1)~1 =2 2, so that the field cannot be assumed to be well
described initially by the vacuum state. Rather, the field has a photon
probability distribution P, = #"(% + 1)=("+1) [equation (2.133)]. The
upper-level probability given by (6.26) must be replaced by .

o}
Py(t)= )Y Pa cos?(CvV/n + 1)t, (6.30)
n=0
and similarly (6.27) is replaced by

(af (Ma()) =7+ i P.sin*(Cvn + )t (6.31)

n=0
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In the experiments of Rempe et al. the atoms exiting the cavity were
detected by field ionization with a field strength such that mainly the atoms
in the 63p3/; level were ionized. By selecting different atomic velocities,
the interaction time of an atom with the field could be varied. The upper—
level probability P,(t) as a function of the interaction time ¢ could thus
be determined, and the data for the limited range of accessible interaction
times were found to be in quite good agreement with the prediction (6.30)
of the Jaynes—Cummings model.

The results (6.28) and (6.29) show that there is no irreversible sponta-
neous emission when an atom is coupled to only a single mode of the vacuum
field. When the atom is coupled to all the modes of free space, however,
the upper-level probability is not sinusoidal but (approximately) exponen-
tially damped (Section 4.14). Fermi (1932) illustrated this behavior with
a coupled-oscillator model. Two coupled harmonic oscillators sinusoidally
exchange the energy initially residing entirely in one of the oscillators. As
more and more oscillators are coupled into the system, however, the time
it takes for the one initially excited oscillator to recover a substantial por-
tion of its initial energy increases; as the number of oscillators becomes
very large, the energy of the initially excited oscillator is effectively lost
irreversibly.

The discrete summations over n in single-mode results such as (6.30)
and (6.31), of course, result from the quantization of the field, i.e., from
the “granularity” associated with field quantization. A consequence of this
discreteness is a “collapse and revival” behavior (Eberly, Narozhny, and
Sanchez-Mondragon, 1980), evidence for which has been observed in the
experiments of Rempe et al. Such behavior is related to the quantum re-
currence theorem for quasiperiodic systems (see Milonni and Singh (1991)
and references therein).

6.5 Laser Linewidth

It has been known since the earliest research on lasers that spontaneous
emission prevents laser radiation from ever being perfectly monochromatic.
In this section we consider this quantum limit to the laser linewidth and
show how it may be associated, at least in part, with the vacuum field. The
material presented here is a bit specialized, and in the interest of brevity
we must refer the reader to the technical literature for details (see Milonni,
1991; Goldberg, Milonni, and Sundaram, 1991).

We assume that an amplifying medium fills the laser cavity defined by
mirrors at z = 0 and 2z = d. The laser is assumed to operate on a single
mode of the field, and for simplicity we describe the field in the plane-wave
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approximation. We denote the annihilation part of the intracavity field
operator associated with propagation to the right (i.e., in the direction
from z = 0 to z = d) by AR(z,t)e““’°‘, where Ap, is slowly varying in time
compared with the oscillation at frequency w,, the frequency of the lasing
transition of the atoms making up the gain medium. The time dependence
of Ar(z,t) allows for the nonmonochromaticity of the radiation.

Consider the field Ar(d<,t + 2d/c) at the right mirror:

2d
Agr(d<,t+ 7) = Ap(d¢,t)v/GRiG+ AR yac(—d, )WV G
+ AL,vac(d> ,t)\/ ToGR1G + Asp(d<,t). (6.32)

Here d. and ds denote points just inside and outside, respectively, the
mirror at d. R; and T; denote mirror power reflection and transmission
coefficients, and VG is the amplitude amplification factor associated with
a single pass through the amplifying medium. Subscripts R and L label
right- and left-going fields, while vac labels source-free, vacuum fields.

The first term on the right side of (6.32) arises from the propagation of
the left-going field at d¢ through the gain medium (\/5), reflection off the
mirror at z = 0 (v/R1), and a second pass through the gain medium (VG).
The second term arises from the transmission of the external vacuum field
through the mirror at z =0 (V/T1), followed by amplification of this field as
it propagates to the mirror at z = d (v/G). The minus sign in AR vac(—d, t)
merely indicates that the right-propagating field reaching d¢ at time t+2d/c
is, except for the effects of transmission and gain, the right-propagating field
at d¢ —2d = —d at the retarded time (t +2d/c) — 2d/c. Similarly the third
term results from the transmission of the left-going vacuum field through
the mirror at z = d (v/T3), amplification vG) and reflection (VR1), and
a second pass through the gain cell (VG). Finally Asp stands for the
contribution from spontaneous emission, as opposed to the contributions
from stimulated emission involving the factor VG.

Equation (6.32) expresses a basic kinematical relationship. It has contri-
butions only from vacuum fields that have passed at least once through the
medium. This expresses the assumption (which can be rigorously justified
by a mode expansion of the field) that the vacuum fields are transmitted
and reflected just as are fields of “real” photons.

It is convenient to convert (6.32) to a first-order differential equation by

making the approximation®

2d 2d .
Ap(de,t+—) = Ag(d<,t)+ 7An(d<,t)‘ (6.33)

6 The neglect of higher derivatives in (6.33) may be justified a posteriori on the grounds
that v, — cg is small near steady-state oscillation.
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In' (6.1'32) we can also write Ap(d¢,t) = VRyAgr(d<,t); note that the con-
tribution fron"x the transmitted vacuum field is already included in the third
term on the right in equation (6.32). Thus we can replace (6.32) by

. . ¢ c
Ar(de,t) = Z[GVRR: - 1Ar(d<,t) + 55 [An,m(—d, 1)v/GT
+ AL vac(ds, )G\/RiT; ] + 5c(—IASP(d<,1t). (6.34)
In the limit of small output coupling (i.e., T}, T5 << 1) we have’

GVRiR:—1 = /R Rye™ — 1= /R R, +3d\/RiR; -1

2 InyRyR;+7d
a1 21 1
= " (2‘7c) +gd= _c—(icy - 57«:)- (6.35)

Here g = (l /d)InG is a “mean” power gain coefficient and v, = —(c/2d) x
In(R, R;) is the cavity power damping rate. Thus

. 1 -
Ar(de,t) = -2-(cg—-yc)AR(d<,t)+%[An,vac(—d,t)\/GTl

+ AL vac(d>, )GV/Ri Tz | + éAsp(d«t). (6.36)

Let us consider now the field correlation function (AR(t)AL(t + 7)) for
‘the field at d., where the expectation value refers to an initial state [¢))
in which there are no photons in the field. This correlation function will
determine the laser linewidth, as discussed later. Equation (6.36) implies

(A tATt-i- = i'z[td' * " Nl
rahe+m) = (5) |[ @ [T awewten
x e'y(t'+t"—2t-—r)
t t4r
+ [a ] dt"(Asp(t')ALp(t")>e~<t’+f”-2t—f>].
(6.37)
Here

V(t) = AR,vac(—d, t)\/ GT, + AL,vac(d> , t)G\/ R\TY (638)

1 .
When the output coupling and other losses are small, the steady-state gain required
to overcome all the losses is small, i.e., G 2 1. See, for instance, Goldberg et al., 1991.
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and 7= 1(ve — 3). Since (Arvac(—d, 1) Ak yac(—d, 1)) and (AL yac(d>,2) X

AI vac(d>, 1)) are not zero, the vacuum field leaking into the cavity from
the outside contributes ezplicitly to (6.37). We show later that

d
(Anae(=dy )AL e (4, = (AL vacld>, )AL acd> 1) = S8 —1"),
(6.39)
so that d
(vwan) = [GTy + G*RaTz)-8(¢ — ), (6.40)
while the corresponding normally ordered correlation function of course
vanishes. Since they correspond to different, uncorrelated vacuum field

modes, the left- and right-going vacuum fields do not make an “interference”
contribution to (6.40). In the limit of small outcoupling [cf. (6.35)],

GTy = 71— R)=1—- R = —InRy, (6.41)
G?RiT; = e Ry (1 - Ry) 21— Ry = —In Ry, (6.42)
and
d 1/2d\° ..., .
(V(t’)VT(t”)) = —'c-(ll'l R1R2)6(tl - t”) = -i (-c—> 765(t -1 ) (643)

It may also be shown that

1(2d ? ¥e Pr ' "
(Asp(t)ALp (") = 3 (-c—) mts(i - 1), (6.44)
where P, and P; are respectively the steady-state upper- and' lower-level
occupation probabilities of the lasing transition. Then (6.37) gives

1 1 P Y\ —yr _ 1 Pa Yo\ vt
(4n()AR(t+7) = [5 * 5?;:7::] (a) “ =IR-A (27) "
(6.45)
where the two terms in brackets in the first equality arise from V and Asp,
respectively, i.e., from vacuum and source fields.
The laser spectrum is determined by the Fourier transform of (645)
Thus the spectrum is predicted to be Lorentzian with linewidth (i:ull width
at half-maximum) Aw = 2y = 7. — ¢g. Equation (6.45) also implies

t t L gal
(Ar@®)ah(®) = (AhOARW) +1=Fn.+12 Fn
1 P Ye
- 15 (3): (6.40)
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or P
oot 2 e .
7 PZ_Pln.u, (647)
where n,, is the steady-state intracavity photon number.® Then
P, Ye
Aw = —=un 6.48
Py — Py n,, ( )
or, since the output power P,y = vy hwn,,,
P2 ( hw ) 2
Aw = —_— . 6.49
Py— P \Pout) (6.49)

This lower limit to the laser linewidth is called the Schawlow-Townes line~
width.®

It might be noted that the quantum limit to the laser linewidth is or-
dinarily not of much practical concern, since other contributions to the
linewidth (e.g., mirror jitter) are usually much larger. In semiconductor
lasers, however, the linewidth is often dominated by quantum noise. This
is due to the facts that Aw is proportional to d~? and that d is very small
for semiconductor lasers.

As mentioned following equation (6.45), the laser linewidth in our calcu-
lation has equal contributions [except for the factor P,/(P; — Py)] from the
vacuum field entering the cavity from the outside world and the sponta-
neously emitted radiation from atoms inside the cavity. If we had per-
formed the calculation using the normally ordered correlation function

(AL(t)AR(t + 7)), on the other hand, we would have found that the en-
tire linewidth Aw is attributable to spontaneous emission (Milonni, 1991;
Goldberg et al., 1991). The choice of operator ordering in the field corre-
lation function is dictated by the detection scheme employed to measure
the linewidth (Appendix E), but has no influence on the actual value of the
linewidth. The situation here is akin to the role of operator orderings in
the interpretation of spontaneous emission and the Lamb shift in Chapter
4.

It is worth noting again that our calculation of the Schawlow-Townes
linewidth assumes that the vacuum field is transmitted, reflected, and am-
plified in the same way as fields of “real” photons, i.e., fields defined in terms
of excited states of the field. The transmission and reflection properties of

8 For small outcoupling (45 (t)Ar(1)) & (AL (t) AL (1)), so that n,, = (AL (t)AR()) +
(AL(0AL() & 2L (1) Ar(1)).

For numerical estimates of Aw see, for instance, P. W. Milonni and J. H. Eberly,
Lasers (Wiley, New York, 1988).
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the vacuum field are consistent with the fact (see Sections 2.4 and 6.2) that
the spatial variations of the quantized field are the same as those of the
classical field subject to the same boundary conditions. The fact that the
vacuum field may be amplified follows from the fact that its contribution
to the laser linewidth is more or less interchangeable with the contribution
from spontaneous emission: if spontaneously emitted radiation inside the
cavity is amplified by the gain medium, then so too must the vacuum field
entering the cavity. Another way to say this is that “quantum noise” may be
amplified. Such noise amplification, which has been known for many years
to electrical engineers engaged in maser research, for instance, appears also
in other contexts in quantum optics.!®

Evaluation of Vacuum Field Correlation Function

In our derivation of the laser linewidth we required the correlation func-
tions (6.39) and (6.44). We shall now provide a derivation of (6.39). The
derivation of (6.44) may be found in Goldberg et al. (1991).

Consider the operator

1/2
Eryac(t) =1 (2”3‘” ") ax(0)e Wkt (6.50)
k

where w, is the central frequency of the lasing transition, V is a quantization
volume, and ax(0) is the source-free photon annihilation operator for the
mode k. The factor e“' makes ER vac(t) the slowly varying, positive—
frequency part of the electric field operator that drives the slowly varying
atomic dipole operator. The spatial dependence of the vacuum fields will
be of no consequence in what follows and is therefore ignored here.

From (6.50) we have the vacuum expectation value

2 h : t "
(Ervac(!) Ehnel)) = 2 (——‘-,ﬂ’i) einmed=) (6.51)
k

since {(ax (O)aI,(O)) = §zr. In the one-dimensional mode continuum limit
appropriate for vacuum fields propagating along the direction defined by the
optical axis of the laser we take V = A,L, where A, is some cross-sectional
area and L is a length, and 3, — (L/27) [ dk. Then, in an approximation
appropriate to our purposes, '

npt " _L_ 27h /oo —i{w—wy)(t'-t"")
(ERyvac(t)ERyac®)) — 52 (AoL) 0 duwe

10Gee, for instance, P. W. Milonni, E. J. Bochove, and R. J. Cook, Phys. Rev. A40,
4100 (1989).
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hwo / dwe_i(w_“"’)('l—t”)

A,c
_ 2mhwo ., Ly _ d [27hw,
= A s —t") = p (——Aod )6(t’ —t").

(6.52)

In our approach to the laser linewidth we require the slowly varying field
annihilation operator AR vac(t), which may be defined by writing

o 27hw, 1/2
ER,vac(t) =1 ( Ad ) AR,vac(t)~ (653)

Comparison with (6.52) indicates that
A nat "M\ o d ' "
(Arseclt) A clt)) 2 2600 1), (6.54)

and of course (AL’VM(t')AR,m(t”)) = 0. Clearly AL yac(t) has the same
correlation properties. '

Petermann and Purcell Effects for Lossy Cavities

For lossy cavities the Schawlow—Townes linewidth (6.49) is multiplied by a
factor K, the “Petermann factor” (see, for instance, Milonni, 1991; Gold-
berg et al., 1991 and references therein). For mirror reﬂectivitie,s R, ; Ry =
R, the Petermann factor is K = [(1— R%)/2Rlog R}? if diffraction losses are
ignored. This factor, which is near unity for R 22 1, is attributable to the
fact that the field vacuum fluctuations are amplified by the gain medium

and that this amplification in a lossy system cannot in general be derived,
under the approximation of uniformly distributed loss.

. There is another effect of a lossy single-mode cavity that occurs even
in the case of a single spontaneously emitting atom: if the cavity is “over-
damped,” in the sense that the photon loss rate v, is much larger than the
“vac1‘1um Rabi frequency” C' (Section 6.4), then the spontaneous emission
rate_ into the single mode is increased by the @ factor of the cavity'! (see

for instance, Cook and Milonni, 1987, or Feng and Ujihara, 1990 and refer-’
ences therein). This effect was first predicted by Purcell in 1945, and has

11 “ H 4 :
'{}1\0 quality factor 1Q is defined by writing the bandwidth, in this case v, =
(47)~{(c/L) log(Ele)'.], as v/Q. It was introduced in about 1920 by K. S. Johnson
as a figure of merit for coils (inductors). According to E. I. Green, [American Scientist

43, 584 (1955)] “His reason for choosing Q was quite simple. He says that it did not

-stand for ‘quality factor’' or anything else, but since the other letters of the alphabet had

already been pre-empted for other purposes, Q was all he had left.”
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been observed in the experiments of several groups in more recent years
(see, for instance, Goy et al., 1983).

6.6 Amplified Spontaneous Emission

To appreciate the interplay of spontaneous emission and amplified vacuum
fields in gain media, we now consider in a heuristic and very simplified way
the problem of amplified spontaneous emission (ASE). This problem arises
when we have a gain cell without mirrors to provide feedback and multi-
ple amplifications. Spontaneously emitted radiation can be amplified by
stimulated emission in the gain medium and emerge as a directional beam
of radiation resembling laser radiation. ASE is of practical importance be-
cause it can substantially deplete the gain available to an input signal to
be amplified, and also because it can irradiate a target before the amplified
signal pulse.
In the simplest model of propagation in a gain medium we write

:dfé = gI y (655)
where g is the gain coefficient, which for simplicity we take to be inde-
pendent of I 12 {pder the assumption that most of the atoms of the gain
medium are in the excited state of the lasing transition, we have g = o N,
where o is the stimulated emission cross section and N is the number of
atoms per unit volume in the excited state. Equation (6.55) assumes a
steady-state situation in which the intensity I is independent of time.
Obviously (6.55) implies I(z) = 0 for all z if I(z = 0) = 0. In other
words, if there is no input radiation at the entrance plane z = 0 of the gain
cell, there will be no radiation anywhere in the cell. This is in conflict with
the observation of ASE. To remedy this deficiency of our simple model we
assume the existence of some effective input noise intensity g at z =0, in
which case
I(z) = Iqe?” . (6.56)

Since I.g represents “quantum noise,” it must be associated with the
vacuum field. Recall from Chapter 1 that the vacuum field has a spectral
energy density p,(v) = 4whv?/c® such that po(v)Av is the zero-point field
energy per unit volume in the narrow frequency interval [v,v + Av]. Then

12This is the so-called small-signal or unsaturated limit in which the intensity is suffi-
ciently small that it does not cause any substantial depletion of the gain.
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the quantum noise intensity at the laser transition frequency v is

_ Q The?Q
Ieﬁ' = Cpo(ll)a = (—AT) A , (657)
where we have inserted a factor §2/4, with 2 the solid angle defined by the
bore radius and length of the gain medium. This factor accounts for the
fact that only the field modes within the solid angle 2 are effective noise
sources. In the present context Av = ¢A)/A% should be on the order of the

spectral width of the laser transition. For later pur
. . poses we have replaced
Av by m¢AA/)? in (6.57). From (6.56), then, P

1(2) = ("’t\c: Q) AXeS” . (6.58)

This equation describes the buildup of intensity before the intensity be-
comes large enough to substantially deplete (saturate) the gain medium. It
is used in simple estimates of ASE power.!3
But now let us ignore the vacuum field and modify (6.55) in a different
way, by including the contribution of spontaneous emission to the growth
of intensity:
dI hvAu N
T=9l+ +Q , (6.59)
.where A»; 18 as usual the spontaneous emission rate and again we have
included the solid angle factor 2/4x. In this case this factor is included be-
cause the spontaneous emission from a single atom is statistically isotropic
whereas we are interested only in the radiation into a solid angle Q. ’
As earlier we assume that ¢ and N are constants. Then (6.59) has the

solution
_ hVA;)lQ N z
I(z) = (T) 7(ey - 1)’ (6.60)

if we assume now that I(0) = 0. For a homogeneously broadened gain
medium with Lorentzian lineshape of width (full width at half-maximum)
Av we have!*
_ AZAZI 2 _ A4A21
T 87 mAv  4Am2cA)

(6.61)
and therefore (6.60) becomes

rheQ
1(z) = ( ;5 >A/\e” (6.62)

laSee for instance, P. B orkum and R. S. yl y IE. . Q m ron. Q
¥ y I . C Ia or EE J uantu. Elect E-

14 Gee, for instance, P. W. Milonni and J. H. Eberly, Lasers.
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in the approximation ef* >> 1. This is identical to the result (6.58) ob-
tained from the perspective of quantum noise associated with the vacuum
radiation field.

The equivalence of (6.58) and (6.62) in our highly simplified analysis
shows that “quantum noise” due to the vacuum field is closely related to
spontaneous emission, as in the theory of the laser linewidth presented in
the preceding section. This circumstance may ultimately be traced to the
fact that spontaneous emission itself may be viewed — except for a factor of
two — as stimulated emission by the vacuum field (Sections 3.2 and 4.13).

6.7 Geonium

Single particles or small clouds of particles can now be trapped practically
indefinitely in Penning traps. Dehmelt has called these trapped-particle sys-
tems geonium atoms, since earth-bound trapping apparatus plays a binding
role analogous to that of an atomic nucleus (van Dyck, Schwinberg, and
Dehmelt, 1978; Dehmelt, 1990; Brown and Gabrielse, 1986). With such
traps, the electron g — 2 has been measured to an accuracy = 900 times
greater than was possible in previous measurements.

It is a well-known consequence of Gauss’s law that charged particles can-
not be trapped by electrostatic forces alone.!® However, trapping is possible
with a combination of a homogeneous magnetic field and an electrostatic
quadrupole potential, as in a Penning trap. Consider first a particle in the
homogeneous magnetic field B = B#. In this case trapping can be achieved
radially, since in the zy plane the motion of a charge e of mass m is circular,
with the cyclotron frequency w. = e B/mc and radius inversely proportional
to B.

The charge can be trapped axially with an electrostatic potential ¢(r, z)
such that F, = —ed8¢/0z = —kz, with k > 0. In this case 8%¢/dz* = k/e,
and so the Laplace equation, V2¢ = §%¢/022+r=10/0r(r0¢/0r) = 0 in the
case of azimuthal symmetry, can be satisfied by the quadrupole potential

2 __ .2
0.9 = (52 = 57%) = 8.5

= (6.63)

where d is introduced as some characteristic trap dimension. This potential
can be realized with charged conducting surfaces shaped so as to form
equipotentials of ¢, as in Figure 6.2. To be equipotentials of é(r, z) these

15This is Earnshaw's theorem. See, for instance, R. P. Feynman, R. B. Leighton, and
M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1964),
Volume 2, p. 5-1.
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sqrfaces must asymptotically approach z = +r2/2. The two “endcaps” in
Figure 6.2 are hyperboloids of revolution defined by
2
2_,2,7T
2° =2z + 5 (6.64)
where z, is defined in the figure. On the two endcaps the potential is thus
#0(22/2d?). The ring electrode is a hyperboloid defined by

2_1,.2_ 2
2% = E(r -rd), (6.65)

where r, is defined in the figure. On the ring electrode the potential is
—@o(r2/4d?). The potential difference between the ring and endcap elec-
trodes is therefore ¢,(22 +r2/2)/2d? = ¢, if we define 2d? to be z2 + r2/2.
The quadrupole potential in the Penning trap geometry of Figure 6.02 is

thus
2-r2/2

z
é(r,z) = ¢o——zz K (6.66)
with e¢, > 0.

' The axial motion of a charged particle in an idealized Penning trap is a
simple harmonic oscillation at frequency w, given by
k
“-’3 — edo

m md?’
and typically w, << w.. Thus the trapping is primarily magnetic. For
B =58.72 kG, ¢, = 1022 V,and d = 2, = r,v/2 = 0.335 cm (Gabrielse
and Dehmelt, 1981), we have

(6.67)

2 > 164 GHz, =X =
o = z, o= 64 MHz . (6.68)
The radial motion is described by the equation of motion
. 1, oo 1.
mr = e(E + erB)_e [-i-d—zr+ ;pr] , (6.69)
where r is the radial displacement. In terms of w, and w, = —eB/mc =
—eBz /me,
.1
r= 5wfr +we xr . (6.70)

The rafiia] dgpendence of the potential (6.66) gives rise to a repulsive elec-
trostatic radial force associated with the first term on the right side of
(6.70). We can write (6.70) as

| o
= waa — w8, s=z+iy. (6.71)
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Figure 6.2: Electrode and field configurations in a Penning trap. From Brown
and Gabrielse (1986), with permission.

The general solution of this equation has the form

s(t) = scem 4 speTiomt (6.72)
2 2

w, = % + (%ﬁ) - w—;— =W, — W (6.73)
c we) 2 w?

Wy, = % - (—2-) et ? . (674)

The radial term in the potential (6.66) causes a decrease in the cyclotron
frequency from w, to w, and introduces a new frequency wm << wh Fallc?d
the magnetron frequency.'® Thus the radial motion of a charged particle in
a Penning trap consists of a cyclotron orbit superimposed on (I.nuch sl.ower
and larger) magnetron orbits, resulting in the epicyclical behavior d‘eplctfad
in Figure 6.3. This radial motion is superimposed on the harmonic axial
oscillation.

16 This terminology derives from the magnetron, the device used among other things
to produce the radiation in a microwave oven. In a magnetron electrons from a heated
cathode move under the influence of an axial magnetic field and a radial electric field.
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Figure 6.3: Motion of a particle in a Penning trap, projected onto the zy
plane. The large circle represents a magnetron orbit, the small circles cyclotron
orbits. Typical cyclotron orbit radii are actually about 100 times smaller than
magnetron radii. The motion perpendicular to the plane of the paper is an axial
oscillation with amplitude about 50 times larger than the magnetron radius.
From Brown and Gabrielse (1986), with permission.

For the parameters used to obtain the estimates (6.68) we have

w

so that
wm << w, << W, (6.76)

for parameters typical of recent Penning trap g — 2 experiments. Typical
dimensions for the cyclotron, axial, and (cooled) magnetron motions are
106,103, and 10~* cm, respectively.

The magnetron motion arising from the radial term in (6.66) is actually
unbounded: any decrease in the energy in the magnetron motion causes the
magnetron radius to increase (Brown and Gabrielse, 1986). However, as a
consequence of the relatively slow magnetron frequency, the damping time
of the magnetron energy due to radiation is very large — on the order of
years — and so as a practical matter the magnetron motion is quite stable
enough.

In the geonium experiments of Dehmelt and his collaborators the Pen-
ning “electron cage,” about 4 cm in diameter, is immersed in liquid helium
and contained within the core of a superconducting magnet. The trap is
pumped to obtain a good vacuum, and electrons are injected into the trap
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by emission from a hot filament. An applied RF voltage causes the elec-
trons to oscillate axially, inducing oscillating image charges in the endcaps
and therefore an oscillating current through a resistor in an external circuit.
The IR drop through the resistor, together with noise, is the voltage be-
tween an endcap electrode and the ring electrode, and serves as the signal
for monitoring the axial motion of the electrons.!” Steplike reductions in
the signal, separated in time by several minutes, indicate the one-by-one es-
cape of electrons from the trap. Reduction of the amplitude of the applied
RF voltage when one electron is left in the trap allows the single electron
to be trapped for weeks.

Single-electron trapping times on the order of 10 months have been
realized by “motional sideband cooling” (Wineland and Dehmelt, 1975;
van Dyck et al., 1978). In essence this effect involves the absorption of RF
photons with an energy defect made up for at the expense of energy in the
magnetron motion (see also Brown and Gabrielse, 1986). Cooling of the
magnetron motion ensures that the trapped electrons move in small orbits,
for which broadening and shifting of spectral lines due to electrostatic and
magnetic field inhomogeneities are minimized. (The axial and cyclotron
motions are cooled “automatically” by resistive and radiative damping.)

Geonium experiments have required enormous effort and ingenuity, and
the reader is urged to consult the cited literature and the references therein
for clear and authoritative accounts. We now turn briefly to the greatest ac-
complishment (and the original purpose) of these experiments, namely the
remarkably precise measurement of the electron magnetic moment anomaly.

Measurement of the Spin Anomaly

The interaction Hamiltonian for a magnetic dipole moment g in a magnetic
field B is —p - B. Associated with the electron spin angular momentum s
is a magnetic dipole moment p = gpu,s, where p, = eh/2mec is the Bohr
magneton and g = 2 (Section 3.13). Thus, for B = Bz,

1
H, = —gl‘oszB = _gl‘o'iazB, (677)

and the allowed energy levels are +gu,B/2. The frequency for transitions
between these two levels is therefore '

wp = g2 = %uc : (6.78)

1714 is worth noting that IR is only about 10717 Wt
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where again w, = eB/mc is the cyclotron fre in “ ’
: ‘ quency. The spin “anomal
(Section 3.13) is then g Y

g'—'2 Wwe — We Wq

7 = ==, (6.79)

We We

where w, is the so-called anomaly frequency.

Equation (6.79) shows that the spin anomaly can be determined from
measurements of the spin precession frequency w, and the cyclotron fre-
quency w.. But w, —w, is the difference between two large numbers, and
so a determination of g — 2 from measurements of w, and w, would éntail
large errors. It would obviously be much better to measure the “anomaly
frequency” w, = 1073w, directly.

In fact a key to the great precision of the geonium g—2 experiments is the
fact that a ratio of two measured frequencies, as in (6.79), is determined.®
This eliminates the need to know p,B/h, as would be the case, say if g
itself were determined using (6.78) and a measurement of w,. ’A sir,nilar
approach was used in the earlier ¢ —2 experiments of Crane et al. (see Rich
and Wesley, 1972).

It should be recalled that, due to the electrostatic quadrupole potential
the cyclotron frequency w. is shifted to w’ according to equation (6.73) and’
80 w, is likewise shifted to w) = w; — w!. Then ,

9—2 w,—(wli—wp) w,—w
=t e (650)
c m We +wm
or, since wy, = w? /2w’ from (6.73),
9—2 _ w, —wi/2w
2 w4 wifw’ (6-81)

which is the formula used in the paper o i
Dehmelt (1987), for instance. e f ven Dyck, Schwinberg, and
. In the experiments some very important modifications of the basic Pen-
ning trap design are introduced. One of the most crucial ones is the use of
A ferromagnetic (nickel) ring that distorts the magnetic field, causing field
lines to bow outward slightly at the midplane of the trap. This reinforces
the eﬂ"ect. of the electrostatic field in “binding” the motion to the midplane
resulting in a positive shift of the axial frequency. This addition to the’
Penning trap is called a magnetic bottle.

18 - -
The determination of g — 2 involves an average of measurements made with several
rlectrons, but results for different electrons agree out to the last decimal place of accu-

racy, confirming that all “copies” of the electron appear to be i i
Wil o pp o be identical (Ekstrom and
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Figure 6.4: A typical record of the axial frequency shift. Spin flips are signalled
by the change in the “root level” of the “cyclotron grass.” From Dehmelt
(1990), with permission.

The small axial frequency shift due to the magnetic bottle depends on
the energy of the cyclotron orbit and on the electron spin. With n the
quantum number describing the quantized (harmonic oscillator) cyclotron
motion, and m (= £1/2) the spin quantum number, the axial frequency
shift is

Av, Z(m+n+ -;—)6, (6.82)

where 6 is independent of the charge but inversely proportional to the mass
of the trapped particle. For typical experimental parameters, § = 1 Hz
(Dehmelt, 1990) compared with the unperturbed axial frequency v, ~ 60
MHz.

The axial frequency shift is used directly in the determination of the
cyclotron and anomaly frequencies and therefore of g — 2. A signal near w,
is introduced via a microwave inlet to the trap in order to induce transitions
among cyclotron states. A typical record of the measured axial frequency
shift is shown in Figure 6.4. The “grass” is due to the thermal fluctuations
at the ambient temperature of about 4 K; the “root level” of the grass
corresponds to the lowest rung of the ladder associated with (6.82). The
cyclotron frequency is determined by scanning the applied signal frequency
to find that frequency giving the tallest grass (Ekstrom and Wineland,
1980).

A second signal is used to induce transitions in which both the cyclotron
orbit and the spin orientation change (Figure 6.5). The axial frequency shift
(6.82) is smaller when the spin is down than when it is up, and so when
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n=1 —n=2 0 n=1 n=0
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Figure 6.5: Transi'tions between (a) two cyclotron orbits, with no spin flip; (b)
two spin states, with no change in the cyclotron orbit; and (¢) two cyclotron

states, accompanied by a spin flip. The last transition occurs at the anomaly
frequency ox g — 2.

the electron is in the down state the root level is different from what it is
Yvhen the spin is up, as can be seen in Figure 6.4. The anomaly frequency
is determined as that frequency producing the the most frequent changes
in the grass root level.!®

As discussed in Chapter 3, these experiments have determined g with
rerr}arkable precision. The agreement with eighth-order QED computations
which are so complicated that they required about three months of super—’
computer CPU time, is superb [compare equations (3.96) and (3.97)]. At
the present time g is the most precisely measured property of any elemen-
tary particle, and this is not likely to change soon. Moreover, it has been
confirmed to a high degree of accuracy that the electron and positron ¢
factors are identical (van Dyck et al., 1987).

Tl.le main obstacle at this time to even greater precision in the g — 2
experiments is the “cavity shift.” We remarked at the end of Section 6.2

9 . - .
The drlvm.g frequencies for measuring both the cyclotron and anomaly frequencies
can be determined very accurately with an atomic clock.
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that the Lamb shift of a transition, like the spontaneous emission rate, is
generally modified by the presence of a conducting surface. In general any
radiative transition frequency and emission rate will be modified, including,
for instance, those for the cyclotron transitions in geonium. In this case
there is an effective microwave cavity defined by the electrodes of the Pen-
ning trap. Measurements of the cyclotron radiative lifetime by Gabrielse
and Dehmelt (1985) gave 7! = 0.3 sec, whereas a value 2 1 sec was found
for a trap whose electrodes had fewer slits (van Dyck, Schwinberg, and
Dehmelt, 1984). The calculated lifetime is .08 sec (Brown and Gabrielse,
1986). There is evidently an inhibition of spontaneous emission due to the
absence of any cavity mode frequency at the natural emission frequency,
just as in the cavity QED experiments discussed earlier.

A cavity shift of the cyclotron frequency is obviously cause for concern
in the geonium g — 2 experiments. Unfortunately the shape of the Penning
trap electrodes, as well as the presence of holes and slits, makes quanti-
tative assessments of the role of cavity shifts extremely difficult. Some
progress, however, has been made for a much simpler (cylindrical) geom-
etry by Brown and Gabrielse (1986). Their estimates indicate that “an
experimental search for this systematic effect should be made to confirm
the value of the g factor of the electron.”

Thus the modification of the electromagnetic vacuum field by conduct-
ing surfaces appears to be an important consideration in attempts to push
the g — 2 measurements to still higher accuracy. Of course g — 2 itself is, at
least in part, a consequence of the coupling of the electron to the vacuum
field (Section 3.13).

6.8 Quantum Jumps

What are now often referred to as quantum jumps were first discussed by
Dehmelt in 1975 in connection with a single-atom spectroscopic scheme for
detecting weak transitions. Dehmelt’s proposal has been realized exper-
imentally with single trapped ions (Nagourney, Sandberg, and Dehmelt,
1986; Sauter et al., 1986; Bergquist et al., 1986; see also Cook and Kimble,
1985).

The basic idea is simple and is illustrated in Figure 6.6, which shows a
ground atomic state 0 that has a large transition dipole moment connecting
it to level 1, but a very small dipole moment connecting it to level 2.
In other words, the transitions 0 — 1 and 0 « 2 are strong and weak
transitions, respectively. If radiation at the 0 — 1 transition frequency
is applied to the atom, the excitation of level 1 leads to fluorescence of,
say, ~ 10° photons/sec. Level 2 is far off resonance and is not excited
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Figure 6.6: (a) An energy-level scheme for the observation of quantum jumps
and. (b) the expected strong-transition fluorescence intensity versus time fo;
a single atom, with “dark periods” due to excitation of the weak transition
From Cook and Kimble (1985), with permission. .

by the field. If a field at the 0 « 2 transition frequency is also applied
ho.wever, there is a small but finite 0 « 2 transition rate. As long as levei
2 is not populated, there continue to be = 108 fluorescence photons/sec at
the 1 — 0 emission frequency. But when level 2 is populated, the atom
cannot unfiergo 0 — 1 transitions, and so the fluorescence at ,the 1—-0
frequfency is temporarily shut off. If the 0 « 2 transition is very weak, the
atomlc_ electron is “shelved” in level 2 for a relatively long time. Du,ring
such 'tl.mes thfare are “dark” periods in the fluorescence from the 1 — 0
f‘ransmon, as indicated in Figure 6.6. The strong-transition fluorescence is
oft” whenever the weak transition is excited, and “on” whenever it is not.
Thus the strong-transition fluorescence intensity I(t) provides a measure
of the excitation probability of the weak transition. This is the essence
of Dehmelt’s proposal. Note that, aside from such an application, the
§trong-transition fluorescence can be regarded as a monitor of the “quax,ltum
Jjumps” associated with spontaneous emission on the weak transition. Since
these quantum jumps are random (God is playing dice!), I(t) is presumably
among Nature’s truest random processes (Erber et al., 1989; Cook, 1990).

6.9 Remarks

The phenomena described in this chapter are interesting not because they
reveal anything particularly new about the electromagnetic vacuum, but
hecauge technological developments have made it possible to study ;;hem
experimentally. These studies have supported the theoretical prediction
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that the vacuum electromagnetic field, and therefore emission rates and
frequencies, for instance, are modified by conducting surfaces. They indi-
cate that vacuum field effects are relevant to a variety of situations, ranging
from the fundamental linewidth of a laser to the experiments measuring the
electron magnetic moment with unprecedented accuracy.

Nonrelativistic vacuum electromagnetic effects are all associated with
zero-point “motion” of the field variables, i.e., with the zero-point energy
of the harmonic oscillators describing the field modes. In Chapter 1 we
discussed some of the early history of ideas about zero-point energy, but
there is little in that history to “prove” the existence of zero-point energy
associated with harmonic oscillators. In closing this chapter we note that
recent experiments with trapped ions have provided strong evidence for the
reality of this zero-point energy (Diedrich et al., 1989). In the experiments
with trapped particles the zero-point energy sets a lower limit to freezing

of the particle motion.
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Chapter 7

Casimir and van der
Waals Forces: Prelude

I mentioned my results to Niels Bohr, during a walk. That is
nice, he said, that is something new. I told him that I was puzzled
by the extremely simple form of the expressions for the interaction
at very large distances and he mumbled something about zero-point
energy. That was all, but it put me on a new track.

— H. B. G. Casimir (private communication, March 1992)

7.1 Introduction

The Casimir force between conducting plates is often cited as proof for the
reality of the vacuum electromagnetic field (Itzykson and Zuber, 1980). It
should be clear to the reader by now that there are many observable con-
sequences of the vacuum field, including spontaneous emission, the Lamb
shift, the anomalous magnetic moment, van der Waals forces, and the fun-
damental laser linewidth, all of which may be attributed at least in part to
the vacuum field. In this chapter and the next we describe various “Casimir
effects,” including macroscopic manifestations of van der Waals forces.

Casimir’s work actually had its origin in a problem of colloidal chem-
istry, namely, the stability of hydrophobic suspensions of particles in dilute
aqueous electrolytes (Sparnaay, 1989). Such suspensions are “stable” if the
particles (= 0.1-1 ym in size) do not coagulate. The particles in a stable
suspension are charged; coagulation occurs when the electrolyte concentra-
tion is increased beyond a critical value.

This behavior is explained as a consequence of the interplay between
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repulsive and attractive forces. The repulsive force arises because each
charged particle is surrounded by ions of opposite charge; the “layer” of
ions is characterized by a Debye length Lp. When two particles come
within about Lp of each other there is a repulsion caused by these ionic
layers. The attraction is due to the integrated effect of van der Waals
interatomic forces, each particle consisting of typically billions of atoms.

A quantitative model for the stability of such colloidal suspensions as-
sumes two parallel plates separated by a distance d (Verwey and Overbeek,
1948). The repulsive force per unit area between two such “particles” is
found to be Frep & 100n,kTe"d/ Lo where n, is the ion number density
and L3 ~ kT/8wn,e?. The attractive force per unit area is obtained by in-
tegrating the pairwise forces between atoms, assuming an interatomic force
given by the London-van der Waals interaction (3.66). It is found that
Foer = —A/d3, where Ais a positive constant. Coagulation occurs when
| Fattr] > Frep for interparticle separations d, e.g., if n, is increased beyond
a certain critical value.

In 1946 Overbeek inferred from experiments that for relatively large col-
loidal particles the attractive force decreases more rapidly than d=3 (Ver-
wey and Overbeek, 1948). He conjectured that the r—9 interatomic energy
calculated by London might actually fall off more rapidly with r if the fi-
nite velocity of light were accounted for. Casimir and Polder (1948) then
calculated that, due to retardation associated with the finite value of ¢,
the van der Waals interaction actually varies as r=7 at large interatomic
separations.! This “retarded” van der Waals interaction was derived in
Section 3.11.

In attempting to better understand this result, Casimir found that the
van der Waals interaction could be attributed to the change in the zero-
point energy of the field due to the presence of the two atoms, much as
in Feynman’s later argument for the Lamb shift (Section 3.7). He then
considered the simpler example of two parallel conducting plates. The
same sort of argument involving the change in the zero-point energy of the
field due to the presence of the plates led to his prediction of the “Casimir
force” discussed in Chapters 2 and 3. ‘

1The modification of the van der Waals interaction at large separations was perhaps
first considered by J. A. Wheeler, Phys. Rev. 59, 928 (1941). In Wheeler’s work the
modification at large interatomic separations is identified simply with the fact that the
field from an oscillating dipole has contributions that fall off more slowly than r=3. See,
for instance, equation (3.78).
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7.2 Force Between Dielectrics

?n Sfection 2.7 we derived the Casimir force per unit area between two
infinite, parallel, perfectly conducting plates separated by a distance d:

w2he
F=—gr. (7.1)

We followed Casimir’s original approach of calculating the zero-point en-
ergy of t'he electromagnetic field when the plates are separated by d, then
subi:,ra.ctmg the energy for d — oco. In Section 3.10 we showed th:;t the
Casimir force can be attributed to the radiation pressure of the zero-point

field.
With d the plate separation in microns, the Casimir force (7.1) is

013
F= — dynes/cm® (d in pm). (7.2)

Let us compare this with the Coulomb force between two oppositely charged
conducting plates. In that case the attractive force per unit area is Foou =
2mo?, where o is the surface charge density. Writing o = CV/A = (A/de)
x V/A, where C is the capacitance, V is the potential difference between
the plates, and A is the cross-sectional area, we have

Fcou = il/i
YT 8w az’ (7.3)
anc.l for d = 1uym, Fcou is equal to the Casimir force (7.2) when V = 17 mV
This shows that small differences in surface potentials between the plates'
must be avoided in experimental measurements of the tiny Casimir force
F?r thfe interpretation of experiments on the forces between two plate.s
the s1mp.11fying assumption of perfect conductivity (reflectivity) at all ﬁel(i
frequencies is unrealistic, and the Casimir expression (7.1) must be replaced
by one that includes the dielectric properties of the media. An obvious
way to accomplish this is to add the van der Waals forces of attraction
betwegn the molecules of the two plates. Consider first a single molecule
at a dl'stance d from a half-space z > d filled with N; identical molecules
per unit volume. If the intermolecular potential is V(r) = —B/r?, then the
interaction energy between the single molecule and the half-spacé 1s

—NlB/ d;c/ dy/ dz[2? + 22 + y*/?
-0 -~00 d
27I’NlB
= m— 7
=20 -9) @9

V(d)
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If the single molecule is now replaced by a half-space z < 0 of Nz molecules
per unit volume, then the interaction energy becomes

27NN, B bt 3y _ —27 N1 N:B 1
W) =-G—gn -3 ), FEHY BCRECERIED LA

per unit area, and so the force per unit area between the two dielectrics is
_ 27I'N1NzB 1 ) (76)
G-

Assuming the intermolecular London-van der Waals potential (3.88),
we have v = 6, B = 3hw,a’/4, and, for Ny = Ny = N,

F(d) =

7 N2hwoa? A @7
8d3 T 6md®

F(d)=—

where A = 3n2hw,a?/4 is called the de Boer-Hamaker const'ant of t.,he
material.2 If instead we assume the retarded van der Waals interaction

(3.91), then y =7,B = 23hca’ /4w, and

2 2
E%%i (7.8)

for identical, semi-infinite dielectric slabs. Note the obvious but important
fact: the force between macroscopic bodies can be very much more long-
ranged than the forces between individual molecules. ‘ ‘ o

The earliest experiments on the forces between d1e1e<:,tr1c plates indi-
cated that the forces acting were roughly an order of magnitude larger 'than
expected from estimated de Boer-Hamaker const.ants. It. was recogplzgd,
of course, that the de Boer-Hamaker approach of mt‘egratmg over pairwise
interactions applied strictly to rarefied media. Speclﬁcal.l)f, th_e derivation
of (7.6) assumes that the intermolecular forces are additive in the sense
that the force between two molecules is independent of the'presence? of a
third molecule. However, the van der Waals forces are not in fact simply
additive (Section 8.2). . . -

The discrepancy between microscopic theor1es-as§um1ng additive inter-
molecular forces, and experimental results reported in the fearly 1950s, ev-
idently motivated Lifshitz (1956) to develop a macroscopic the(?ry of th.e
forces between dielectrics.3 His results reduce to those of the microscopic

F(d) = -

2], H. de Boer, Trans. Faraday Soc. 32, 10 (1936); H. C. Hamaker, Physica 4, 1058

(193;)3; also L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media

(Pergamon Press, Oxford, 1966), Section 90.
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theory with additive intermolecular forces when the dielectric constants are
close to unity, but are substantially different otherwise. In the limiting case
of perfect conductors, the predicted force between two plates reduces to the
Casimir force (7.1). Except for a few details discussed in the following chap-
ter, the Lifshitz theory is now generally accepted and, as we shall see, has
been supported by some careful experiments.

The Lifshitz theory is rather complicated, and doubts have occasion-
ally been raised concerning its validity. Lifshitz assumed in effect that the
dielectrics are characterized by randomly fluctuating sources (see Section
7.3). From the assumed delta-function correlation of these sources, corre-
lation functions for the field were calculated, and from these in turn the
Maxwell stress tensor was determined. The force per unit area acting on
the two dielectrics was then calculated as the zz-component of the stress
tensor.

Rather than presenting the details of Lifshitz’s derivation here, we shall
obtain his results following the Casimir approach based on the zero-point
energy of the quantized field. This approach in the case of dielectric slabs
was evidently first used by van Kampen, Nijboer, and Schram (1968) for
the case of small separations, where retardation can be ignored. In this case
the magnetic field B can be assumed in effect to vanish, and this simplifies
the determination of the mode frequencies.

We consider the case of a medium with dielectric constant e3(w) sand-
wiched between two semi-infinite media with dielectric constants ¢;(w) and
€2(w). These media are assumed to occupy the regions 0 < z < d,z < 0,
and z > d, respectively, as shown in Figure 7.1. We will calculate the
force per unit area between the two semi-infinite slabs from the total zero-
point field energy ) %hwn, where the w,, are the mode frequencies for the
situation depicted in Figure 7.1.

Our first task is to determine the mode frequencies. For this purpose
we consider solutions of the form

E(r,t) = Eo(r)e"""' , (7.9)
B(r,t) = B,(r)e” ™" (7.10)
of the Maxwell equations
v-D = 0, (7.11)
16B
VxE = —-C——a-i— , (712)
vV-B = 0, (7.13)
16D
VxB = Zﬁ- , (714)
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2=0 z=d

Figure 7.1: Geometry for the derivation of the Lifshitz expression .for tl.me fon‘:e
between two semi-infinite dielectric slabs separated by a layer with dielectric

constant €3.

for nonmagnetic media with zero net charge density p. We assume isotr_<)£itc
media such that the electric displacement vector D(r,t)‘= e(fu)E,.,(r)e .
We can satisfy the Maxwell equations if, in each medium in Figure 7.1,

V-EO=V'B0=0, 2
VZEo + %G(U)Eo = 0’ (715)
(4

2
- V2B, + "_:_26(“_,)130 =0, (7.16)

and the appropriate boundary conditions are satisfied. Let us assume so-
lutions of the form

E,(r) = lez(2)Z + ey(2)§+ e,(z)if]e"(k"""‘””) , (7.17)
B,(r) = [bz(2)& + by(2)d + by(z)z]e B=mFhat) | (7.18)
so that
des gz, - 7.19
—d_z;z_ -K €y = 0, - ( )
d?b
£ _ Kb, =0, (7.20)
dz?

and likewise for the y, z components of e and b, where we define
2
w
K?=kX+k2 - ew)— - (7.21)

In the case of free space, e(w) = 1 everywhere for allw, and2t.he2 usyzal plan;:-
wave solutions are obtained for K2 < 0: k2 + k2 + k2 = w?/c? K* = —k;.
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For the case illustrated in Figure 7.1, let us first consider modes with
K2 > 0 in all three media. By a particular choice of the coordinate system
we can make k, = 0 and

K?=k?— e(w)w—2 k=k (7.22)
cz b -_— x ¢ -

The condition that the normal component of D be continuous implies that
€(w)e.(z) is continuous for each w, while V - E, = 0 implies

de,

dz

From V x E, = i(w/c)B,, furthermore, we have

tke, +

=0. (7.23)

B,(r) = [ii-i;;% - f(ke, + i%)g + -Ekeyz] ek (7.24)
Hence, V - B, = 0 is satisfied identically, and the continuity of the normal
component of B implies that e, must be continuous. Continuity of the
tangential component of E is then guaranteed if e, is continuous, and this
condition is satisfied if, from (7.23), de,/dz is continuous. Finally the
tangential component of H (= B) is continuous if dey /dz and ke, +ide, /dz
are continuous. But, from (7.23), (7.19), and (7.21),

de; 1 d2%e, 1 [d2%e, 2
koo +iGE = ko= p T = [ - Ve
| 9 1 w?
= —Z[K — ke, = z e(w)?‘,- e, (7.25)

and we have noted that the continuity of this quantity is already required
by the continuity of the normal component of D. Thus all the boundary
conditions are satisfied if (1) ee, and de,/dz are continuous and (2) e, and
dey /dz are continuous.

Now since d%e,/dz% — K2%e, = 0 we have, ignoring unphysical, exponen-
tially growing solutions,
e:(2) = AF? | 2 <0
= Befe? y CeKs? | 0<z<d
= De Kz ;54 (7.26)
where K; = \/k? — ¢j(w)w?/c?. The preceding boundary conditions (1),

that ee,(z) and de, (z)/dz are continuous at z = 0 and z = d, then yield four
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linear algebraic equations for A, B, C, and D. The condition that nontrivi?,l
solutions of these equations exist, i.e., that the determinant of the ma?.nx
of coefficients vanishes, yields after straightforward algebra the expression

(3K + 1K3)(esKa + €2K3) aksa _ § _ ¢ (7.27)
(€3K1 - €1K3)(E3K2 - €2K3)

It is easily shown in the same fashion that the boundary conditions (2)
are satisfied across the boundaries at z = 0 and z = d if

(K1 + K3)(Kz + K3) axsa _ 1 — . (7.28)
(K1 — K3)(K2 — K3)

Equations (7.27) and (7.28) are conditions on the allowed frequencies w.
They cannot in general be satisfied simultaneously. However, both bound-
ary conditions (1) and (2) can be satisfied if (a) (7.27) is satisfied and e, = 0
or (b) (7.28) is satisfied and e, = 0. Thus we have two types of modes.
Those of type (a) have e, = 0 and mode frequencies w determined by t‘he
solutions of (7.27). Those of type (b) have e, = 0 and mode frequencies
determined by the solutions of (7.28).

Zero-Point Energy of the Surface Modes

The modes we have obtained under the assumption that the K; are real
are exponentially decaying functions of z for z < 0 and z > d, and for this
reason are called surface modes (Barton, 1979). We will consider now the
zero-point energy associated with these surface modes:

1 1
E(d) = _ 5hwna+ Y 5hwns (7.29)
n n

where the wne and wpp are the frequencies associated with the modes of
types (a) and (b), respectively.
The sums over modes in (7.29) include the continuum of values of ks

and ky:

Y- (%)Z/dl%/dky2= <2—I;r-)2/27rkdk;; (7.30)

where L is a length for the z,y sides of our “quantization box” and b N
denotes the sum over all solutions of (7.27) or (7.28) for w(k). Thus

Ed) = %’i ” dkk [Z wa(k) + Ewm(k)] . (7.31)
T Jo N N
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For the purpose of performing the summations we first recall the “argument
theorem” from the theory of functions of a complex variable: for a function

f(2) that is analytic except for poles (i.e., is meromorphic) on and inside a
simple closed curve C,

1[I
2mi Jo ()

where N is the number of zeros and P the number of poles of f(z) inside
C .4 A straightforward generalization of the argument theorem states that

1 '), _ . _ ) _
T A z.—fzzj—dz = lz': z,] oo [Z z,l oo = (sum of zeros

dz=N-P, (7.32)

H
of f(z) inside C) — (sum of poles of f(z) inside C). (7.33)
Let F,(w) and Fy(w) denote the left-hand sides of (7.27) and (7.28),

respectively, so that

ZwNa(k) = sum of zeros of Fo(w), o = a,b. (7.34)
N

Obviously the poles of F,(w), considered as a function of a complex variable
w, are independent of d. Therefore we can write

L[ R, _
a7t f“ Fof@) = 2 wna®) = () (7.35)

where (...) is independent of d. Here C is the closed curve defined by the
imaginary axis of the complex w plane and a semicircle in the right half of
this plane, with the radius of the semicircle extending to infinity.® Since
d-independent contributions to (7.31) do not contribute to any force, we
can for our purposes write

Ed) = Z—L: ('z%ﬁ) /ow dkk[ Cuiigzgdwrjiw%%dw] . (7.36)

4 A zero of order n is counted as n zeros, and likewise for a pole of order n. The reader
who does not recall the argument theorem or who is unable to quickly reconstruct its
proof based on the residue theorem can find it in elementary textbooks such as M. L.
Boas, Mathematical Methods in the Physical Sciences (Wiley, New York, 1983), p. 609.

5The wna(k) of physical interest are of course those lying along the positive real axis.
It may be shown that all the zeros of Fo(w) do in fact lie on the positive real axis when
the ¢, (w) are real and vary with w in the way predicted by elementary dispersion theory.
Thus the contour integral (7.35) does not have contributions from any frequencies other
than those of physical interest. However, it is not obvious how to extend this particular
approach to the case of absorbing media, where the ¢;(w) are complex, see Section 7.3.
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Recalling the definition of the curve C, we can write each contour integral
in the preceding as the part along the imaginary axis plus the part along
the semicircle. In the required limit of infinite semicircle radius, the latter
integral is d-independent and makes no contribution to a force. The integral
along the imaginary axis is

[ i e i) = i [ axeged

Fa(i€) 0(i€) oo Gal8)
= i j deed%logaa(e)

It

i /_ Y delogGale),  (137)

for @ = 1,2, where in the last step we have performed a partial integration.
. We have defined Gq(&) = Fa(if); explicitly,

(eaK1 + €1 K3)(€3Kq + €2K3) e2Ksd _q

Ga(E) (631(1 - 611{3)(631{2 - €2K3) ’ (738)
_ (Ki+ Ka)(Ka2+ K3) sxea
GO = E-K)Ko-Ka) (7.59)
where now ¢; = ¢;(i€) and
K? = k* +¢;(i€)€*/c* . (7.40)

Equation (7.36) is then
E(d) = -81—2/0 dkk [/_w alglogc:a(£)+/_oo dglogG,,(g)] . (1.41)
Force Between the Dielectrics

We will now calculate the force, associated with the zero-point energy of
the surface modes, between the dielectric slabs 1 and 2 of Figure 7.1. From
(7.38) and (7.39) we see that 8Ga/dd = 2K3(Ga + 1), and therefore that

* 1
/ dfC—;—2K3(Ga + 1)

= /oo dgK3+2/_°° X (149

- 00 o0 Ga

6 o0
- / dElog Gale)

The first integral is independent of the presence of the dielectrics 1 and 2,
and therefore is not related to any force between them. This force per unit
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area is therefore

__9 __h [ * 1 1
F(d)= —52Bd) =~ / “’“’“/0 ks [Ga(k,£)+ab<k,e>(]’ |
7.43

where we have used the fact that the K; and ¢;, and therefore G, and G&,
are even functions of £. More explicitly, the force between the dielectric
slabs 1 and 2 of Figure 7.1 1is

ﬁ 00 o0
F(d) = -3 /0 dkk /0 d¢Ks

y [631{1 +aKs esKa + e2Ks o -1
631{1 hnd 611<3 €3I<2 - €2K3

K1+ K3 K+ K3 3x,q -
[KI “KaKs—Ks® | ’ (7-44)
where ¢; = ¢;(i€) and the K; are defined by (7.40).
Comparison with the Lifshitz Theory
We now use in equation (7.44) the variable p defined by writing
a_ &
k= e;;;(p -1). (7.45)
Then K2 = k? + e3€2/c? = e3[€%(p? — 1)/c? + €%/c?], or
Ks = \/a;%p, (7.46)
and similarly
2 2
2 - 2 € _ £ 2 €1,2
1{1,2 = k°+ 61,2-65 = 63'6—2'[1) -1+ E]
S
= 63 02 31’2 . (7.47)

Using the variables p and s; 5 in (7.44), and dkk = (£2/c?)eadpp, we have

F(d) = ——L /w dpp2 /oo d{fsfs/z ( €351 + €1D €389 -+ €p
272c3 ) o 3 €251 — €1p €357 — €2p

_ -1
x e26pVEdlc _ 1] g [iif_’wezep\/ad/c - 1] _
s1—ps2—p

(7.48)
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This result for the force per unit area between the dielectric slabs 1 and 2
(Figure 7.1) agrees exactly with that of Lifshitz (1956) when we consider
with Lifshitz the case of vacuum between the slabs (e3 = 1).° In the more
general case of a dielectric medium 3, our result is the same as that of
Schwinger, DeRaad, and Milton (1978).

Force Between Perfectly Conducting Plates

In the special case of two perfectly conducting plates separated by vacuum
we take €; o — 0o and €3 — 1. Then (7.48) reduces to

h le o] 2 o0 3 2
_212&/1 dpp /0 W atpare — 1

_ he /°°d _2/°° dzzx3
= TTemat ), PP ), e -1
w2he

which is the familiar Casimir force (Sections 2.7 and 3.10).

F(d)

Imperfectly Conducting Plates

From the form of expressions like (7.48) and (7.49) it is clear that the
dominant contribution to the Casimir force between conductors comes from
frequencies £ in the range £ ~ ¢/d. For d ® 1 uym, therefore, the dominant
frequencies are in the infrared and visible regions of the electromagnetic
spectrum. For such frequencies the dielectric constant”

w2

o e 4
c(w)=1- 22, (7.50)
where w, is the plasma frequency: w? = 4wNe?/m, with N the number

density of free electrons. We will assume identical imperfect conductors
separated by vacuum, in which case (7.48) becomes :

_ h ® s [7 3 2tpdfc _ -1
F(d) = —57 /1 dpp /0 de¢ ([Xe p 1]
-1
+ [yexerele 1] ) (7.51)

6See equation (2.9) of Lifshitz's 1956 paper.
"For lower frequencies the dependence of ¢(w) on the static conductivity o must be
included.

Force Between Dielectrics 229

2 2
X = (”f”) , Y= (”p) . (7.52)
s—¢€p s—p

For perfect conductors, X = Y = 1. Writing X =1+ AX and Y =
1+ AY, with AX, AY small, we have

where

h e Epdfc

where F¢(d) is the Casimir force (7.49) for the case of perfect conductors.
To calculate AX and AY, we first note that

212

s = [PP—1+e@€)V?= [P +€2

2
~ Y PE
o 5+2w,, (7.54)

to first order in £/w,. Then

wp /& + 6/ 2w +,,>2 4pg
y=|(-2£ £ 2l1+—, 7.55
(wp/f + p2€/2wp — “p ( )
or AY = 4p€/w,. Similarly we obtain AX = 4{/pw, and therefore
- 34 - e2épdfc
F(d) = Fc()+223/ dpp / deg [P+P ]m
72he?
= Feld+ g0 F
16 ¢
= Fe(d) [1 - ?;;:l- , (7.56)

in agreement with Hargreaves (1965) and Schwinger et al. (1978).3

The effect of imperfect conductivity is therefore to diminish the Casimir
force of attraction. For a metal with N = 1023 cm~2, the plasma frequency
wp & 10'%s~! and 16¢/3wpd ~ 0.2/d(um). For very small separations,
therefore, the Casimir expression for the force is a poor approximation.

8 Lifshitz (1956) used the same approximations for the case of imperfect conductors,
but obtained, apparently incorrectly, the numerical factor 15./7 instead of the 16/3 of
(7.56).
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Dielectric Plates with Small Separations

The general expression (7.48) for the force involves the dielectric constants
at all frequencies. However, a simplification can be achieved for dielectrics
at large and small separations by recognizing that the dominant contribu-
tion to the force comes from values of p and € such that 2péd/c ~ 1. Suppose
d is small compared with ¢/w,, where w, is a resonance (absorption) fre-
quency of the dielectrics 1 and 2, which we will assume to be identical and
separated by vacuum (¢; = €3 = €,e3 = 1). Then 2pfd/c << 2p€/w,, and
2ptd/c ~ 1 implies p€ >> w,. Since €(i€) — 1 for { >> w,, we can assume
that the dominant contribution to (7.48) at small separations comes from
p >> 1. In this case s;,2 = p and

h o o [T |l (1teEN 2epa/e B
F(d) = _21r2c3/0 dpp/o d [(l—e) (1—-45)e -1
A
~x —— [ 4| de—TF— 7.57
1672d3 J, 0 (:-‘E%)zex -1 ( )

in agreement with Lifshitz (1956). Note that the force between dielectrics
at small separations varies as d~3.

Dielectric Plates with Large Separations

Large separations are defined by d >> ¢/w,, where w, is again a frequency
at which significant dielectric absorption occurs. Assuming again €; = €z =
¢ and €3 = 1, and defining the new variable z by writing { = (c/2pd)z, we
write (7.48) as

F(d)

h [+ 4 e 2 o x3
Tt (2d) /1 dpp /0 dz 3
-1 -1

(- +[ezy=-).
(7.58)

€ = e(icz/2pd), s=+/pP~1+¢€. (7.59)

Since the main contribution to the force arises from values of z ~ 1, and
since p > 1, we can effectively replace e(icz/2pd) by the electrostatic di-
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electric constant €(0) = ¢,.> Then
hc [+ o0
Fld) = —=—22 -2 3
( ) 32W2d4[ dpp /0 dzz
9 -1 2 -1
x([(u) ex_l] (2x2) ez_l] )
8o — €op So—P
(7.60)

where s, = /p? — 1 + ¢,. In this case the force varies as d~* and depends
only on the electrostatic dielectric constant e,,.

Rarefied Media and Intermolecular Potentials

The dielectric constant is given in terms of the atomic (or molecular) po-
larizability & and number density N by

€(w) =1+ 4rNa(w) (7.61)

for media in which Lorentz—Lorenz corrections are unimportant. For rar-
efied media, such that ¢(w) = 1, we can approximate the short-separation
force (7.57) by

h 0 o0
F(d) = Ty /0 dzz’e~"(47N)? /O deo?(i€)

RNZ? [
= -3535 /0 déa?(if) . (7.62)

In this limit F(d) can be obtained by pairwise integration over the inter-
fnol‘ecular potentials, as in equation (7.6). Comparison of (7.62) to (7.6)
indicates that v = 6 and that the intermolecular potential

B 3h

V=% ="7s

/0 ~ dea(it) | (7.63)

which is the London-van der Waals interaction.!?
For rarefied media the large-separation force (7.60) becomes

F(d) = __hc /°° dpp~? /°° dzzie™" (so —ep)’ + et N
32n2d? J, o 50 + €0p S0+ P
9For perfect conductors, ¢, — 0o and (7.60) reduces to the Casimir force.

‘ 10See the second line of equation (3.87) and recall that we can replace e—2ur/c by 1
in that equation for small separatians r.
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o 12he(e,—1)? [ 1—2p" +2p*
= Tae@Eeed ), T

23he(eo — 1)2 (7.64)
= T 64072t '

where we have used the approximations €, = 1 and

1

so= VP e —12p+ 6"2; (7.65)
In this case the comparison of (7.64) to (7.6) gives v = 7 and
_ (20)(23)hc(eo — 1)2 _ 23hca’® (7.66)

(27N2)(64072) ~— 4w’

where we have used (7.61) and defined a as the static molecular pqlariz—
ability. Then we infer for large separations the intermolecular potential

B 23hca’

U(T‘) = —;7 = —W y (767)
which is the Casimir-Polder result (3.91) for the retarded (long-range) van
der Waals interaction.

Thus we can derive both the retarded and unretarded van der Waals
interactions between two molecules from the macroscopic theory of the
force between two dielectric plates. This theory requires basically only the
Maxwell equations and the assumption that each mode of the field has a

zero-point energy 1hw.

Remark;

We have derived the Lifshitz expression (7.48) for the force between two
dielectric plates in a conceptually simple way based on the zero-point energy
of the electromagnetic field. The first step in the derivation was to obtain
the “dispersion” equations (7.27) and (7.28), which determine the allowed
field frequencies in the presence of the dielectrics. Using these results,
we then obtained equation (7.41) for the part of the total zero-point field
energy depending on the distance d between the dielectrics. Differentiation
of that expression with respect to d produced exactly the Lifshitz result for
the force per unit area.

As noted earlier, the validity of the Lifshitz theory has sometimes been
questioned, although the results now seem to be generally accepted. These
results have been obtained in a variety of ways. Schwinger et al. (1978),
for instance, obtained equation (7.48) “by adopting far superior and more

Lifshitz and Barash—Ginzburg Theories 233

physically transparent methods for computing the force,” namely using
Schwinger’s source theory, “where the vacuum is regarded as truly a state
with all physical properties equal to zero.”

Before commenting on these and other methods, we should acknowledge
that the approach we have followed, which is in the spirit of Casimir’s origi-
nal work for perfect conductors and extends the approach of van Kampen et
al. (1968) to include retardation, is not entirely rigorous (Langbein, 1973;
Schram, 1973). The weak point in the analysis is that it ignores the fact
that the functions F,(w) have branch points. However, this shortcoming
is easily circumvented by assuming that the dielectric slabs are contained
within a finite cavity, summing over the zero-point energy of all the modes
of this cavity, and passing to the infinite-cavity limit only at the end of the
calculation. Then one incurs no branch points. In addition such an ap-
proach, though somewhat more complicated mathematically than the one
we have presented, shows in the end that only the surface modes contribute,
as assumed without formal justification in our calculation (Langbein, 1973).
We also note that Barton (1979) has shown that “bulk modes” make no
contribution to the small-separation force (7.57) when there is no spatial
dispersion, i.e., when ¢ is independent of k. (Our entire discussion assumes
no spatial dispersion, as in nearly all the vast literature on the subject.)

But what are more interesting to us are approaches based on different
physical ideas. We next turn our attention to some of these.

7.3 Lifshitz and Barash—Ginzburg Theories

Since we have reproduced Lifshitz’s result for the force between two par-
allel dielectric slabs, it is obviously of interest to compare our calculations
with his. Unfortunately, as noted earlier, the details of Lifshitz’s calcula-
tion are fairly complicated.!! Nevertheless, the physical basis of Lifshitz’s
calculation is not so difficult to understand.

The principal equations at the start of Lifshitz’s analysis are the Maxwell
equations

VxE,

Il

i%B,, , (7.68)
VxB, = —ivew)E, —i—K (7.69)
c (4

for nonmagnetic dielectric media. Here e(w) = €'(w) + i€’ (w) is the complex
dielectric constant, allowing for both dispersion and absorption, and K is

11Ginzburg (1979) writes that the calculations are “so cumbersome that they were

‘not even reproduced in the relevant Landau and Lifshitz volume where, as a rule, all

important calculations are given.”
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a random field corresponding to some randomly fluctuating current. We

already see a difference between Lifshitz’s original approach and the one we
have followed: Lifshitz takes proper account of the fact that ¢(w) is in gen-
eral complex, whereas in our approach based on zero-point electromagnetic
energy, ¢(w) was purely real.’? Furthermore there was no random field K
in our approach.

Actually the use of a complex €(w) in Lifshitz’s theory requires the ran-
dom field XK. Recall our discussion in Section 2.6 where the dissipative
effect of radiation reaction had to be balanced by the fluctuating vacuum
(zero-point) field in order to preserve commutation relations; formal consis-
tency of the theory demanded such a fluctuation—dissipation relation. The
situation is similar in the case of an absorbing medium: the dissipative
influence of the medium must be balanced by a fluctuating source term
whose correlations are related to the form of the dissipation, and in partic-
ular to the imaginary (absorptive) part of the dielectric constant. At zero
temperature this fluctuation—dissipation relation as employed by Lifshitz is

(Ki(v)K;(x")) = 2he" (w)6;;6%(r — 1'). (7.70)

Lifshitz solves equations (7.68) and (7.69) subject to the appropriate bound-
ary conditions, as in our approach, and obtains spatial Fourier components
of E, and B, in terms of the Fourier components g(k) of K. He then calcu-
lates the force between the dielectrics 1 and 2 in terms of the Maxwell stress
tensor, using the correlation function (g;(k)g;(k')) that follows from (7.70).
After some consideration of contour integrals he is led to the formula (7.48)
for the special case €3 = 1 he assumes. It is perhaps worth noting that
Lifshitz acknowledges at the outset that his approach is connected with the
notion of the vacuum field:

... the interaction of the objects is regarded as occurring through
the medium of the fluctnating electromagnetic field which is always
present in the interior of any absorbing medium, and also extends
beyond its boundaries, — partially in the form of travelling waves
radiated by the body, partially in the form of standing waves which
are damped exponentially as we move away from the surface of the
body. It must be emphasized that this field does not vanish even
at absolute zero, at which point it is associated with the zero point
vibrations of the radiation field.

It is remarkable that our approach based on zero-point field energy
reproduces Lifshitz’s result for the force: we did not allow for any possibility

12The concept of a dispersive but nonabsorbing medium violates the Kramers-Kronig
dispersion relations and is an approximation that cannot be realized in practice.
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f’f absorption, and yet the Lifshitz force (7.48) we derived applies when there
is absorption, and indeed Lifshitz explicitly required absorption (¢’(w) #
0) in his derivation. How could we obtain Lifshitz’s result by restricting
ourselves to completely transparent media? And how can the notion of
zero-point field energy be used in the case of absorbing media, where it
is not obvious how we might define eigenfrequencies such as wng,wnp in
(7.29)?

Such questions were answered by Barash (1973) and Barash and Ginzburg
(1975). To appreciate the essentials of their approach, it is useful to con-
sider first the simple example of the driven, damped harmonic oscillator
described by the equation

.. . 1
P+ad+wic= -T;F(t) (7.71)

Defining the Fourier components F,, 2, by writing

F(t) = / dw[F, e ' + Fte™Y] (7.72)
0
2(t) = / du[zpe=i 4 2% et] (7.73)
0
we obtain the steady-state relation
1 F, _
Ty = Em = x(w)Fw y (774)

from which it follows that the kinetic and potential energies of the oscillator
are respectively

K= %m:i:2 = l'm /°° dww /00 dw'W'[x(W)x* (W) Foy Fe = w=u't
2 0 0 e
— x(w)x(W')Fy Fyre™ i@+ 4 cc. | (7.75)
V= -%mwgzz = lnu.)g /00 dw /00 dw'[x(w)x* (W' ) Fu Ftye =i w=w"t
2 0 0 L
+ x(W)x (W) Fu Fure™ @+ 1 cc. . (7.76)

Now suppose that F(t) is a randomly varying force, such that the ex-
pectation values

(FuFu,) =0, (FLF.)=GWw)s(w —w'). (7.77)
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Then the expectation value of the oscillator energy is

m " du(@? + ) x(@)PGw)

1 [ dw(w? + w?)G(w)
mJ, (W?—-w?)?+a’w?’

(E) = (K + V)

(7.78)

The simplest way to arrive at the desired result is to assume that G(w) is a
relatively flat function of w compared with the remainder of the integrand,
and then to use the fact that the integrand is sharply peaked at w = w, for
o << W,

(B2 Lot [ oooyrea = aate) (079)

Therefore, if the oscillator is to reach thermal equilibrium in the presence
of the fluctuation force F(t) and the dissipation force ma, we must have
the fluctuation—dissipation relation

T 1 hw, _
;&G(wo) = Ehwa + m = f(wo,T), (7.80)

where we have included the zero-point energy +hw,. In other words, G(w)
must be proportional to the dissipation coefficient a:

Gw) = I;-rlaf(w,T). (7.81)

This is an example of the fluctuation—dissipation theorem relating the spec-
trum of the fluctuating force to the dissipation coefficient. Our derivation
of the relation (7.81) has been couched in the language of classical physics,
with % arising from the assumed form (7.80) of the average oscillator energy.
However, the derivation is easily extended to the quantum domain, and in
fact the T = 0 fluctuation—dissipation relation may be derived from the
requirement that the fluctuation and dissipation forces should be related in
just such a way as to preserve the commutation relation between z and its
conjugate momentum (see Section 2.6 and Milonni, 1981). Using (7.81) in
(7.78), we have

(E) _a [% dw(w? + w?) f(w,T)
Tor J_o (W2 —-w?)?+aw? )’

(7.82)

where we have used the fact that f(w,T) is an even function of w for T > 0.
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Now the most important feature of the Barash—Ginzburg theory, the
notion of an “auxiliary system,” may be introduced in this simple example
as follows. Define the “auxiliary” oscillator equation

z+ ai +wiz=0
o 0z =0, (7.83)

.where w; is a function of w, which is now regarded as a parameter appearing
in the definition of the auxiliary oscillator. Equation (7.83) has solutions
of the form exp[—iw; (w)t], where

wiw) = w? —iaw . (7.84)
In terms of the frequency w;(w) we may write (7.74) and (7.82) as
1 F,

z, = ;m y (785)
_ _i ® dwwf(w,T) i [® dw(-ia)f(w,T)
(E) T [_oo wi(w) — w? tor [_oo wi(w) — w?

T ) wiw)—w? 27 J_ wi(w) — w?

L [T delT) | defte D)l

(7.86)

The equivalence of this expression to (7.82) is easily demonstrated by simple
algebra, together with the fact that f(w,T) is an even function of w for
T > 0. We can obviously rewrite (E) in the form

(E) = 5’; /_: dw f(w, T)b%-log[wf(w) —w?]. (7.87)

Note that the integrand has no singularity along the path of integration
(i.e., the real w axis), since w;(w) is complex.

Of course nothing is really gained in the present example by the re-
placement of (7.82) by the equivalent expression (7.87). In the case of
electromagnetic waves, the auxiliary system corresponding to (7.68) and

(7.69) is defined by

V x E, iZsB, , (7.88)
c
VxB, = —i%s
i= €(Ww)E, , (7.89)

whe're.a, as in (7.83), w is regarded as a parameter in the definition of the
auxiliary modes labelled by a. These modes may be shown to be orthogonal
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(Barash, 1973), so that the field energy has the form of a sum of contribu-
tions of the type (7.87) — each auxiliary mode is analogous to the auxiliary
oscillator (7.83):

(B) = 23 [ dofo. Tz loriwie) ~o7)
= {; [z dw f(w, T)a% log Mg [w?(w) — w?]
o [ dws) [aeno)g 08 DB, (790

where p(f) is a density of states and D(f,w) determines the mode frequen-
cies through the equation D(8,w) = 0. Thus D(8,w) — D(w) = wi(w)—w?
for the single oscillator, whereas D(8,w) — D(kz, ky,w) = Fa(w) or Fy(w)
for the Lifshitz problem, where Fy, Fy are again defined by the left sides of
(7.27) and (7.28).

It is an easy matter to show that (7.90) leads directly to the Lifshitz
force (7.48). The Barash-Ginzburg approach has several advantages, not
the least of which is that it shows how the zero-point field energy may be
employed in the calculation of the force even when absorption is allowed
for. Tt thus establishes a useful bridge between the Lifshitz theory and the
approach of the preceding section, where zero-point field energy was used
but absorption was not accounted for. In this connection the orthogonality
of the auxiliary modes is crucial. The Barash-Ginzburg approach also
avoids the technical difficulty of branch points mentioned earlier, and the
final result is applicable for T > 0, as discussed in the following chapter.
For further details of the theory the interested reader is referred to the
review by Barash and Ginzburg (1975).

As already noted, the result obtained from changes in zero-point field
energy, without taking absorption into account, happens to be correct also
when €”(w) # 0, i.e., when the possibility of absorption is allowed in the
final expression for the force. This circumstance is perhaps less surprising
when we recognize that the force (7.48) in fact involves ¢;(i€), i.e., the di-
electric constant on the imaginary axis, and that this quantity is always
real.!3 In particular, it follows from the Kramers—Kronig dispersion rela-
tions that

e(i€) =1+ -27;/0 :;+('?2 dz . (7.91)

13Gee L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Medisa, Section
62.
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7.4 Source Theory

The most unconventional approach to the force between dielectrics, and
the Casimir force between perfect conductors, is that of Schwinger et al.
(1978) in which, as mentioned earlier, “the vacuum is regarded as truly a
state with all physical properties equal to zero.” Rather than attempting
to describe their source theory on which this approach is based, we shall
show how the relevant expression of Schwinger et al. may be understood
from the standpoint of ordinary QED. The basic idea here will be that the
Casimir force may be derived from source fields alone even in completely
conventional QED, and that the derivation becomes identical after a certain
point to that of Schwinger et al. The connection with the vacuum field
interpretation of the Casimir force will be made in the following section.

We begin by recalling that an induced dipole d in a field E has an
energy —%d -E classically, and that for N dipoles per unit volume defining
a polarization P = Nd, the expectation value of the energy in quantum
theory is

(B) = ~3 / &r(P -E). (7.92)

We have already employed such an expression in Section 3.8 in connection
with the interpretation of the Lamb shift as a Stark shift due to the zero-
point field. Since in the present discussion we wish to emphasize the role of
the source fields, we will use a normal ordering of field operators in (7.92):

(E) = —% / dBr(EC) . P4+ P.EW), (7.93)

As in Chapter 4, for instance, we can write
EM)(r,t) = EP(r, t) + E(H(r, 1), (7.94)

where E(o+)(r, t) is the source-free (vacuum) part of E(*)(r,t) and E(,+)(r, t)
is the part due to any sources. Then, since E(o+)(r, t)|vac) = (vac|E$,_)(r, t) =
0,
1
(E) =3 / d3r(P(r,t) - E{N(r, 1)) + c.c., (7.95)

where vacuum expectation values are implied.

To obte}in an expression for ES"')(r, t), we first recall from Chapter 2 that
we can write the electric field operator as an expansion in mode functions

A,(r):

E(r,t) =i ) (2rhwa)/?[aa(t)Aa(r) — al ()AL(T)), (7.96)
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where the field modes, which are assumed to form a complete set, are
labelled by the subscript . Then from the interaction term

Hint = — / d*rP(r,t) - E(r, ) (7.97)

in the Hamiltonian we obtain the Heisenberg equation of motion

da(t) = —iwaaa(t) + (2";"")1/2 / BrAL(r) - P(r,1), (7.98)

and therefore

as(t) = (2’“"">1/2 / t di’etwat' 1) / d3rA%(r) - P(x,t) (7.99)
as - h 0 a bl *

for the source part of a,(t). Thus the “positive-frequency” (photon anni-
hilation) part of E,(r,t) is

E{H)(r,1)

t
27ri2w(,Aa(r)/ dt'e“”“(’l“)/dar'A;(r')-P(r',t’)
0
a
t
= 21ri/d3r'/ dt'ZwaAa(r)A;(r')e““°("“).P(r',t')
Y [+

P+
= 87r/d3r’/ dt'G( )(r,r’;t,t')-P(r',t'), (7.100)
0

—(+)
where G is a dyadic Green function.
Equations (7.95) and (7.100) give

t
(E) = —SWRe/dar/dsr'/ dt'GE;")(r,r’;t,t’)(P_,-(r,t)P.-(r',t’)),

° (7.101)
where a summation over repeated indices is understood. This is the energy
of the induced dipoles in a medium due to the source fields produced by the
dipoles.

To calculate the force between dielectrics for the configuration shown in
Figure 7.1, we consider a slightly different situation. We imagine making a
small change in the dielectric constant by adding more polarizable particles
(atoms) to the dielectric media. The polarization density will be changed
from P to P + P/, and the change in the energy due to the interaction of
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the added dipoles with each other will have the form!*

t
(6E) = —87Re / &Br / &1 /0 dt' G (e, x5, ) (Pl (x, ) PI(E' ) .
(7.102)

From Maxwell’s equations for the Heisenberg-picture field operators we
have
10’E _ 47 3’P 47 9*P’

“VXVXE- ST T e T2 e

(7.103)

or

1 9°D _ 4z O*P’
2oz ¢ a2
Of course this equation has exactly the same form as the corresponding
classical equation (recall the discussion in Section 4.6). As in classical

theory we can write the dyadic Green function G for (7.104) as

~VxVxE- (7.104)

L 1 o0 - : 1
G (r,x';t,t') = 5—;/ dw T (r,r',w)ewt) (7.105)

and use the constitutive relation D(r,w) = ¢(r,w)E(r,w) between the

Fourier components of D and E to obtain for T (r,r’',w) the equation

- wz — w2 - 3 ,
-V xVxT +c—2€(w) r= - 16@x—1r). (7.106)
. .=
The positive-frequency Green function G is
5(+)(r Vit t)= = [ do T (50, w)e 0=
itt) = | w T (r,r',w)e , (7.107)
so that
t o<}
(6E)Y = —4Re/d3r/d3r'/ dt’/ dwlij(x,x',w)(Pi(r,t)P/(x',1"))
0 0
x eiwt=t) (7.108)

. Before proceeding we wish to emphasize an important point in connec-
tion with equation (7.108). This equation is similar to (7.101), and in fact

14 Terms of the type (P.'(r,t)P; (r’,t')) do not contribute under the assumption that

‘the new atoms we introduce are independent and uncorrelated from the original atoms

composing the dielectric media.
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it is the change in the energy (7.101) due to the addition of the atoms as-
sociated with the polarization density P’. The fields associated with these
added atoms propagate with a velocity determined by the dielectric con-
stant produced by the unperturbed polarization density P; this is why the
dielectric constant e(w) appears on the left side of (7.106).

We wish now to express the expectation value in the integrand of (7.108)
in terms of the dielectric constant associated with P’. We first write

Pl(r,t) = dpi(t)83(r — rp), (7.109)
B

where dg;(t) is the i-component of the dipole moment operator ds(t) for
an atom at position rg. Thus

(PUr, )P’ ) = 3 D (dpi(t)dy; ()83 (x — 15)8°(x" — x). (7.110)
B

We assume all the atoms are, to a good approximation, in their ground
states |g) at all times, and that the multiatomic wave function has the
uncorrelated form |g) = |g)s]g)+ .- , so that

(dpi(t)dy; (') = 8py (dpi(t)dp; (') (7.111)
and
(Pi(x,t)PI(c', ")) = ) _(dpi(t)dp;(t))63(r — xp)83(x' — xp)
]

—  (di(t)d;(t")) / &' N(x")83(x — )63 (' —x”

= (di(t)d; EN(x)83(r — 1), (7.112)
where we have gone to the continuum approximation in which we assume
N(r) atoms per unit volume at the position r. We have also assumed that

all the atoms are identical, so that (dg;(t)dg;(t')) — (di(t)d;(t')) for all B.
Then (7.108) becomes

(6E) = —4Re / d*rN(r) / dwlj(r, ', w) / dt (di (t)d; (¢'))e =)
(7.113)

Since the Heisenberg-picture operator d;(t) evolves in time according
to the equation d;(t) = ut (t)d;U(t), where d; = d;(0) is the Schrodinger-
picture operator and U(t) is the time evolution operator satisfying thU =
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HU, U(0) = 1, we have
(d@d;(t)) = (gt av@Ute)d;ue)lg)
Sl U@k kIU ) d;U @)le) - (7.114)
k

We have inserted the unit operator in the guise of 3°, |k)(k|, where {|k)}
is the complete set of eigenstates of the Hamiltonian H 4 for a single atom.
If we approximate U(t) by e~*Ha*/%  then

(di(2)d; (2')) ) e Bam Bt/ i(Ex=E IR (g4, k) (k|d;|g)
k

R

Eeiwkg(t’_f)(d‘.)gk(dj)kg (7115)
k
to order e2, and
68) = —aRe [ NG [ dulis(e,m,0) S dor (s
k

/ dt'e i(wHwrg)(t' ~1)

—  4Re l:z/darN(r)/ dwTy;(r, r,u)z (d:i )9’=(d kg

W+ Wy

(7.116)

where we ignore the rapidly oscillating term e~*“+wks)* associated with an
artificial turn-on of the atom—field interaction at ¢t = 0.

Let us rewrite the frequency integration in (7.116) by changing the in-
tegration contour in such a way that w — £, £ real:

(6E) = —4/d3rN(r)/°o dEst(r,r,iE)Z%"—(f"ﬂ . (7.117)
0 k “kg

Now recall the definition of the polarizability tensor for the ground state

9:15

xij(w) = & Z 2“”‘”(‘1 Jor (4)es (7.118)

g~ w?

15See, for instance, A. S. Davydov, Quantum Mechanics (Pergamon Press, Oxford,
1965), pp. 316-321.
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For a spherically symmetric system (e.g., an atom), a;; (w) = aw)b;;, where
a(w) is the usual polarizability.'® Then

. 1 2wig(di)gk(dj)kg _ ne .2“’ky|dky|2 e s
aij(lE) = _7: ; W%g + &2 s 5'1 3h Zk: w%g + £2 - 65]“(16))

(7.119)
which allows us to rewrite (7.117) as

(6E)

_2h/d3rN(r) /°° déa(ié)T;ji(r,x, i)
0
_%/ds"/o défe(r, i€) — 1]T;;(r, x, i), (7.120)

when we employ the relation € — 1 = 4 N« between the dielectric constant
and the polarizability.}”

To calculate the force between the dielectric plates 1 and 2 of Figure
7.1, we consider the change in (§E) as a result of an infinitesimal change éd
in d. For this purpose we imagine that the atoms we have added to change
the energy according to (7.120) constitute a layer of width éd at z = d.
This results in a change € — € + 8¢ in the dielectric constant, and a force

h © b .
f: 5-7;/(131'/0‘ d{mrﬁ(r,r, lf), (7.121)

where, since

e(r,w)=¢e1(ry, z,w)(—2 €3(ry, z,w)0(2)0(d — 2) + &2(r L, z,w)0(z — d
(r,w) = e1(ry, 2,w)0(=2) + €3(ry, z,w)0(2)8( ) +ea(ry )§7'122))
and db(z)/dz = 6(x),

be

5a (€3 — €2)6(z — d). (7.123)

Here r, is the component of r in the zy plane.
Since the dielectric constant varies only in the z direction in the present
example, it is natural to write

2
F o ,w) = (51;) /dzkl T (5,2 ky,w)e ke ®=T) - (7.124)

16Gee equation (3.51). . '
17QOur final results are unchanged when we use the more general Clausius—Mossotti
relation 47 Noa = 3(e — 1)/(c + 2).
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so that
1\° oo
f(d) = —ih (ﬂ) /d3r/ dw(ez — €2)b(z — d)/dzk_,_l‘jj(z,z,k,j_,w),
0
(7.125)

where we have reverted back to w = i{ as the frequency integration variable.
Equation (7.125) implies the force per unit area

F(d) = ih (2%)3/000 dw/d2kl(62 —€3)Tj;(d,d, ko, w). (7.126)

The calculation of I'j; = T'zz + I'yy + I';; is a straightforward exercise

in classical electromagnetic theory: T satisfies (7.106) plus the electric field
boundary conditions at the dielectric interfaces at z = 0 and z = d. The
result is'®

(62 - 63)1-‘]] (dy d; k.L’ w)

2(Ks — K3)

Ki+Ks Ko+ K3 5x.4 -1
2K sd 1
t 3[(1{1—1(31{2-1{36

+ e3K1 + €1 K3 3K + €2K3 e2Ksd _ | -
63K1 —€1K3 €3K2—€2K3 ’

(7.127)

where K2 = k2 — w?e(w)/c?. The first term on the right corresponds to a
change in the volume energy of the system and does not depend on d. The
remaining terms give the force between the dielectrics:

1\? [
2ih (g) L dw/dsz_Ks[...]
-——ih /ood /mdkkK[ ] 7.128
27[2 A W A 3i---)y ( . )

where [...] denotes the bracketed factor in (7.127).

This result is identical to (7.44), and so we have succeeded in obtaining
the Lifshitz force (and therefore the Casimir force when the limits €;,e; —
00,€3 — 1 are taken) in terms of source fields. Qur derivation, which
obviously follows ordinary QED, bears some similarity to the derivation
based on Schwinger’s source theory (Schwinger et al., 1978). By considering

F(d)

18For details of the calculation see Schwinger et al. (1978).
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a variation of an appropriate action expression, Schwinger et al. infer an
effective product of polarization sources

iP(z)P(z')|e =1 6(z — z'), (7.129)

where z denotes a four-dimensional coordinate (r,t) and de¢ is an infinitesi-
mal change in the dielectric constant. They then infer a change in energy*®

b= (2%) / dr / dwSe(r,w)Tas (r, ,w), (7.130)

and a force per unit area

. 3 jo00
F = % (2%) / dw/dzkl(f2 - 53)Fkk(d, d)kan)’ (7131)

which is seen to be the same as (7.126) in their units in which A = ¢ = 1.

The Green dyadic F is determined by the classical Maxwell equations plus
the boundary conditions at the dielectric interfaces, in much the same way
as the determination of the fields in Section 7.2. It is therefore the same
in Schwinger et al.’s source theory as in conventional classical or quantum
electrodynamics.

7.5 Vacuum and Source Theories

In Section 4.10 we said that the possibility of attributing the radiative level
shift to the source field of an atom was remarkable in view of the various
ways in which the shift could be attributed so naturally to the vacuum
field. The fact that the Casimir effect can be attributed to source fields
is equally remarkable in view of its standard derivation as a vacuum field
effect (Section 2.7). The reconciliation of these two viewpoints for the Lamb
shift involved the commutativity of equal-time atom—field operators. This
same commutativity explains also the possibility of deriving the Casimir
force in terms of either vacuum or source fields, as we will now show.

Consider the symmetrically ordered form (Section 4.12) of the energy
expectation value (7.92):

(B) = -3 [@r(GP W +EC)+ FED +EC)-P)
(E)vr +(E)s , (7.132)

19Equations (7.129)—(7.131) correspond respectively to equations (2.7), (2.10), and
(2.29) of Schwinger et al.
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where

(E)vr = —% / dar(—;-P (B +E+ %[Ef,” +E(]-P)  (7.133)
and

-
&

~
wn
fl

—5 [ €GP (B + BO)+ SED + EC)-P)
= —%/d3r(P~E, +E,-P) (7.134)

are vacuum-field and source-field contributions, respectively.

The source field operator E; = E{Y + E{) can be written as [see
equations (7.100) and (7.105)]

t
E,(r,t) = 87r/d3r’/ dt’ G (v,v';t,t) - P(x',t')
0

00 t
= 4/(131"/ dw T (r,r’,w)-/ dt'P(r',t’)e—iW(t_u) ’
—o0 0

(7.135)
and so
(E)s = —/dsr/dsr' /00 (le;j(r,r’,w)/ot dt'[(Pi(x,t)P;(x', 1))
+ (Pj(x', ') Py(x, t))] e~ (=) (7.136)

Equations (7.112) and (7.115) then give
B = = [ [ dolserrg 3l
y / s )(E =) 4 ) 0]
0
. / &ErN(x) /_ 0:0 de‘jj(r,r,u)% ; EWE

1 1
X [ + ] (7.137)
W+ Wiy W — Wy

as in (7.116). Then, since ['j;(r,r,w) is an even function of w,

(E)s = 0 (7.138)
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when the field operators are symmetrically ordered.
To calculate (E)yr we note that E, is independent of the electron charge
e, and so to obtain an energy to order e? we use

oo - .
P(r,t) = N(r)/ dwa(w)[F$H (r,w)e™ ™" + F{)(r,w)e™?],  (7.139)
0
where Fs,i)(r,w) are defined by writing
E®)(r,t) = / dwF{E)(r, w)eFivt (7.140)
0

and a is again the polarizability. In other words, we will use in (7.133) the
polarization induced by the vacuum field:

(E)ve = _% / BrN(r) / " dwa(@)F(r,w)  FOEw) . (7.141)
Now equations (7.100), (7.96), (7.140), and (7.107) imply
T (r,rw) = 4ih(rg+>(r,w)Fg->(r',w)) (7.142)

and .
Tjj(r,¥',w) = 7=(F$D (r,0) - FO(,0)), (7.143)

which allows us to write (7.141) as
o0
(E)vr = 2ih/d3rN(r)/ dwa(w)Tjj(r,r,w)
0

'%fdsr/()m dé[e(r,i€) — 1)T;;(r,x,if). (7.144)

i

This is identical to (7.120) and therefore leads to the same force when we
consider a small change in the dielectric constant. ‘

We can summarize the situation here as follows. In the preceding section
we derived the Casimir force by considering the change in the dipole energy
(7.92) due to the field produced by the same dipoles. We were led to
the expression (7.120) for the variation in this energy associated with an
infinitesimal change in the distance d between the plates, and from this
variation we obtained the Lifshitz expression for the force. This calculation
was based on a normal ordering of field operators, in which case there
is no explicit contribution from the vacuum field, and the force could be
attributed solely to source fields. In the calculation leading to (7.144),
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however, we employed a symmetrical ordering in which there is no explicit
contribution from source fields. The result for the change in the dipole
energy due to the interaction of the dipoles of the medium with the source-
free, vacuum field agrees exactly with the energy variation (7.120), and
therefore implies exactly the same force. The agreement between the two
approaches is a consequence of the commutativity of equal-time atom and
field operators, as discussed in Chapter 4 in the context of spontaneous
emission and the Lamb shift. There, as in the case of the Casimir force,
a normal ordering led to the interpretation of the Lamb shift in terms of
the source field, whereas a symmetric ordering of field operators led just as
naturally to the interpretation in terms of the vacuum field.

7.6 Discussion

The late 1940s were seminal years for the development of our present con-
cept of the quantum vacuum. The Lamb-Retherford experiments and the
interpretation of the Lamb shift as an effect of zero-point electromagnetic
field fluctuations indicated that the vacuum field is a real physical entity
with observable consequences. It was precisely Planck’s feeling that zero-
point energy in particular would have no observable consequences that led
to his abandonment of the concept four decades earlier, and later Pauli,
among others, had the “gravest hesitations” against zero-point energy?2°
(Enz, 1974).

At the same time and, remarkably enough, completely independent
of attempts to physically interpret the Lamb shift,2! Casimir interpreted
the retarded van der Waals interaction in terms of zero-point field energy,
and this then led to his prediction of the Casimir force between conduct-
ing plates. This effect has been called “startling” (DeWitt, 1989), and
Schwinger et al. (1978), for instance, have referred to it as “one of the least
intuitive consequences of quantum electrodynamics.” As remarkable as the
effect itself, perhaps, is the extent to which interest in it has endured over
nearly half a century; indeed, this interest seems if anything to be increas-
ing as the importance of the quantum vacuum is becoming more and more
a part of the mindset of physicists working in various fields. In the next
chapter we will describe aspects of the Casimir force that were investigated
only many years after its discovery, as well as some of the experimental

20In his autobiography Casimir (1983) recalls that, “ ... I explained to [Pauli] my
results on van der Waals forces and their relation to field fluctuations in empty space.
He began by bluntly telling me it was all nonsense, but was obviously amused when I

- did not give in. Finally, after I had countered all his arguments, he agreed ... "

31Y. B. G. Casimir, private communication, 12 March 1992.
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work on Casimir effects.

Whether the Casimir force should be regarded as startling or nonintu-
itive is, of course, arguable. If we regard it is a macroscopic manifestation
of van der Waals forces between molecules, there is hardly any reason for
surprise. Consider again the potential energy (7.4) for a neutral polarizable
particle at a distance d from a dielectric wall. Using the Casimir-Polder
results ¥ = 7 and B = 23hca?/4n for the intermolecular potential, we
obtain

27 1 __ 23hca?® 23 ahe
MY T = T
Gy d ' an 10 d

69 ahce—1

T1607 dt e+1’

V(d) = Nla

(7.145)

where we have employed the Clausius-Mosotti relation, (e —1)/(e + 1) =
47Ny /3, between the dielectric constant € and the polarizability a of the
individual molecules. In the limit ¢ — oo of a perfect conductor, therefore,

69 ahce

V(d) = — 1607 a7

(7.146)
in reasonably good agreement with the Casimir-Polder result (3.95). In
the same fashion we have, from (7.8),

2 2 2
F(d) = _2he (i) (‘_‘_1_> - _gh—: (i> (7.147)
40d4 \ 47 e+1 40d* \ 4«
in the limit of perfect conductors. This is about 80% of the Casimir result
(7.1). In other words, we can obtain fairly reasonable estimates of these
Casimir effects by simply adding up the pairwise intermolecular forces.

On the other hand, the way in which Casimir derived the force between
perfect conductors would certainly command the attention of anyone who
believed that zero-point energy is merely an additive constant to a Hamil-
tonian and can never be of any physical consequence [recall the remarks
following equation (2.87)). .

The calculation of the Casimir force in terms of changes in zero-point
electromagnetic energy seems so natural that, as noted earlier, the Casimir
effect has, with few exceptions (Schwinger et al., 1978; Milonni, 1982), been
regarded as “proof”’ for the reality of vacuum, zero-point field energy. We
have shown, however, that, as in the case of the Lamb shift, the interpreta-
tion of the Casimir force in terms of the vacuum field is largely a matter of
taste: underlying this interpretation is a particular and arbitrary choice of
ordering of field operators. Different orderings reveal that the vacuum-field
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picture is only one of many ways to describe the effect, and in particular a
normal ordering allows us to attribute the Casimir force entirely to source
fields. Indeed, Schwinger et al. (1978) have been able to derive the Casimir
force from the standpoint of a theory in which, contrary to prevailing ideas,
there are no nontrivial vacuum fields.

Why has it taken so long to recognize that the Casimir effect and other
vacuum field effects have equivalent derivations in terms of source fields?
We have no ready explanation for this circumstance. According to Jaynes
(1978), “For many years, starting with Einstein’s relation between diffu-
sion coefficient and mobility, theoreticians have been discovering a steady
stream of close mathematical connections between stochastic problems and
dynamical problems. It has taken us a long time to recognize that QED
was just another example of this.”
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Chapter 8

Casimir and van der
Waals Forces:
Elaborations

. of special interest and difficulty is the process which takes
place in a physical body when many molecules interact simultane-
ously, the oscillations of the latter being interdependent owing to
their proximity. If the solution of this problem ever becomes pos-
sible we shall be able to calculate in advance the values of the in-
termolecular forces due to intermolecular interradiation, deduce the
laws of their temperature dependence, solve the fundamental prob-
lem of molecular physics whether all so-called “molecular forces” are
confined to the already known mechanical action of light radiation, to
electromagnetic forces, or whether some forces of hitherto unknown
origin are involved ...

~ P. N. Lebedev [Wied. Ann. 52, 621 (1894)]’

8.1 Introduction

In the preceding chapter we discussed several theoretical approaches to
the van der Waals—Casimir forces between dielectrics, and the connections
among them. In this chapter we will address a few further aspects of these
forces, as well as some of the experiments that have been carried out to test
the theoretical predictions. We will also consider the possibility of deriving

! Quotation from Derjaguin and Abrikosova, 1957.

"9reY
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vacuum electromagnetic effects such as the van der Waals—Casimir forces
from the standpoint of a purely classical theory of the vacuum field called

stochastic electrodynamics.

8.2 Nonadditivity of Dispersion Forces

As noted in Chapter 7, the van der Waals dispersion forces? are not additive:
the force between two molecules depends in general on 1Eh<‘a presence <?f otl.xer
molecules. To understand the origin of this nonadditivity, we begin with

the formula [cf. equation (7.92)]
(E) = ~3(p E(x.1) (8.1)

for the expectation value of the potential energy of an induced dipole p at
point r in an electric field E. The quantized electric field has the form

E(r,t) = iZ(21rhwp)llzap(O)Ap(r)e""“’" +h.c., (8.2)
B
where ag (0)e~iw#? is the source-free, Heisenberg-picture photon annihila-

tion operator for mode 3 of the field, with associated (c-nur.nber) mode
function Ag(r). The dipole moment (operator) induced by E is

p(t) = iZ(27rhwp)1/2a(wp)ap(0)Ap(r)e"“"" +hec., (8.3)
B

where, for frequencies wp away from any absorption resonances, the polar-
izability a(wg) may be assumed to be real. Equations (8.1)—(8.3), together

with the vacuum field expectation values (ag(0)as:(0)) = (a;‘,(O)ap:(O)) =
0, (ap(0)ab, (0) = bpgr, imply

(B) = —3 Y (2rhwp)a(ua)lAs(m)l" (8.4)
B

Note that we are assuming for simplicity here an isotrqpic polarizability,
i.e., aij = ab;j, as is the case for atoms but not necess'arlly .for molecules.d
In Chapter 7 it was shown that van der Waals dlspel_'suon forces,' an
their macroscopic (Casimir) manifestations, can be obtamed. f.ron'l either
source fields or source-free fields, depending on how field annihilation and

2Recall the discussion of the dispersion interaction in Section 3.11.
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creation operators are ordered. Here we are taking the source-free (vacuum-
field) approach, corresponding to a symmetric ordering of annihilation and
creation operators. This ordering is already implicit in equation (8.1), since
E is the (symmetric) sum of annihilation and creation parts. However,
whichever approach we adopt, we must use the appropriate mode functions
Ap(r) for the field. For a collection of atoms, this means that the |As(r)]?
appearing in equation (8.4) for the energy of an atom at r must account for
the presence of all the other atoms. That is, the quantization of the field
as in equation (8.2) must be performed subject to the presence of all the
atoms.

The mode functions Ag(r) in the presence of polarizable matter are

determined by purely classical electromagnetic considerations. Let Af,o) (r)

be a mode function corresponding to frequency ws in the absence of any
particles:

1 x
AP (r) = —=cKeTe , 8.5
] ( ) \/V B ( )
or 1
A(po)(r) — Ag:i(r) = Wek)\e'k'r , (8.6)
where V is a quantization volume and €ky, A = 1,2, is a polarization

unit vector. The form ¢K'T in this case is dictated by the requirement
that the energy (8.4) for an atom in an otherwise perfect vacuum must be
independent of the position r of the atom. The equation (8.4) then yields
the nonrelativistic expression for the Lamb shift (Section 3.8).

To determine the modification of the mode functions (8.6) due to the
presence of identical atoms at the positions r;, we use the superposition
principle for electromagnetic fields, which in this case states that the total
field Ay, (r) at r corresponding to the mode (k, A) is the unperturbed field

A;: :(r) plus the fields from all the atoms. The field from each atom is a
dipole ﬁeld. associated with the dipole moment induced by the total field
Ak, (rj)e™*** at that atom. This dipole moment is a(wi)Ay, (r;)e™*“**.
Thus

ikjr—-r;|

Aga(r) = AL (1) + Za(wk)v < v x Ak (ri)e . (87)

Ir — ;]

where we have used the fact that the electric field produced by a dipole
moment p(t) at r; is (Born and Wolf, 1970)

E(r,1)= v x v x BU —Irl:jrljl/C) . (8.8)
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(Here and in what follows, V x V x A means V x [V x A] for any vector
field A.) The field at the atom r; is given by

(0) V: x V: X é&(i)‘ir.’_ (8.9)
A, () = A (r) + ; a(wr)Vi x Vi Tij ’ .
15

where r;j = |ri —r;|, and the solution of this (multiple scattering) equation
then yields the potential energy

(Bi) =—3 5;(27f7"w/3)a(Wﬁ)lAﬁ(J'f-)l2 (8.10)
2
[
for an atom at r;.
Now in the lowest order of approximation Ay, (ri) = A(a) L (ri) in (8.9)
and then, as already noted, equation (8.10) gives the nonrelat1v1stlc Lamb
shift. In the next order of approximation

AR (xj)etr
(1)(,.,) ~ (o)(r,) + 3 a(wp)Vi x Vi x — (8.11)
Jj#
and the r;-dependent part of (8.10) is
(BP) = -3 Y @rhwna@nlAR )l
=~ _Re Z(27rhwk)a2(wk)z A%:i(rg)* .Vix Vi x
ka j#
(0) (l‘ )e’k"u
Tij
_ 27rh Z Rez Kuwga®(we)e™ —ikery; gikris
J# kx

1 2
x ([1 — (eka '861)2]7;; + [Bleky i) — 1]

|y - (kri,)ZD | (8.12)

to second order in aw;). Here s;; is the unit vector pointing from atom i
to atom j, s;; = rij/ri;. We obtain®

(E?) = ——Z / dwwSa(w)Glwrij 0), (8.13)
Jj#

3See equation (3.82) and the discussion following it.
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sin 22: 2cos2x Hsin2z 6cos2z  3Isin2z
G(z) = + S T T g T g8 + e (8.14)

For small r;; (see note 2),

(E.(?)) ® —— / dwaz(w)sm
me? J¢‘
— _Z 3h/ dua®(iu)e~2urile
J#
3n [ 2
= —Zm (?33) Ezwmy“’pg|dmg|2|dw|2
i#i m P
_Zur”/c
/ (u2+w Dt +w)’ (®19)

where we have used the expression

ow) = 5 Z “"""d'"fl (8.16)

, — w2

for the polarizability of an atom in the ground state |g), where wy,, and
d,,, are the m — ¢ (angular) transition frequency and the electric dipole
moment, respectively. If rj; << ¢/wm, for all transxtlons m — g, we may
replace e‘2""1/ ¢ by 1in (8.15), and this gives the ru form of the van der
Waals interaction derived by London. If we assume furthermore that one
particular transition is dominant, then

(B7). = ‘Z:—Z(ﬁ) st [ s oy

#i M
3hw,a?
= _g el (8.17)

where w, and d correspond to the dominant transition and o = £|d|?/Aw,
is the static (w = 0) polarizability in the two-level approximation. This is
the London result (see note 2).

For large separations (r;; >> 137a,, where a, is the Bohr radius) we
can approximate (8.13) by

h ; hea?
— 2 / deG(—L“” y= - Bher  (31g)
L e Amr!.

i# j#i ij

(E{) =
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which is the well-known, long-range form of the dispersion interaction ob-
tained by Casimir and Polder (see note 2).

These results, based on the approximation (8.11), give (E§2)) as a sum
of pairwise (“additive”) interactions.

In the next order of approximation we replace (8.9) by

A(l)(rj)eikr.'j
A%)‘(r;) = Aiz(r.-) + ;a(wk)V;‘ x Vi x —&7‘-]——"
j#i
(o) A%:;(rj)eik”j
= Ak)\(r'.) + Za(wk)V; X V; x —
j#i Y
) eikrii Ag::(rp)eikrjr
+ DY W) Vix Vix | ——V; x V;j x —S———
i#i p#i H »

(8.19)

and obtain a correction to (E;) that is of third order in the polarizabil-
ity. This correction is associated with nonadditive, three-body contribu-
tions to (E;). Although the calculation of the detailed form of the non-
additive contributions is somewhat complicated, we can understand their
general form from (8.19). V; x V; and V; x V; give rise to (near-field)
terms varying as r;']-s and r;:, respectively. Cross products of the form
Ai:l)\r,-)‘ -Ag:;(rp) o e~*K'Tis give rise similarly to terms varying as r,-‘pa
after the integration over all solid angles about k is carried out as required
by (8.10). Then we obtain a three-body (nonretarded) contribution to (E;)
of the form :

3
Bl o & 8
(B o i (8.20)

associated with the three-atom triplet i, j,p. Detailed forms of such non-
additive, nonpairwise interaction energies have been derived from standard
perturbation theory by Axilrod and Teller (1943), and, more recently, by
Power and Thirunamachandran (1985) using the Heisenberg picture. These

authors note that (E'(fg) may be attractive or repulsive, depending on the
geometrical arrangement of the atoms.

The three-body interaction is roughly a factor a/r® smaller than the
usual (two-body) van der Waals interaction, where r is a characteristic

interatomic spacing. This point will play an important role in Section 8.5.
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8.3 Extinction Theorem

Formally, assuming the polarizability a(w) is known exactly, the main
problem in the calculation of dispersion forces is the solution of the self-
consistent scattering equation (8.9). One approach to the solution of this
equation is to assume a continuous, uniform distribution of N atoms per
unit volume. In this macroscopic approach (8.9) is replaced by the integro-
differential equation

Aiu(r/)eiﬂr—r’l

Ir —r'|

AL, ()= Ag:i(r) + Na(wk)/dsr'v x V x (8.21)
Here it is to be understood that a small volume about r must be excluded
from the integration, owing to the restriction j # i in (8.9). As it stands
equation (8.21) is also satisfied by the mode functions at points r outside
the region occupied by the atoms, this equation being a general statement
of the superposition principle. For such points |r — r’| cannot vanish and
consequently there is no restriction on the integration in (8.21).

The Ewald—Oseen extinction theorem (Ewald, 1912, 1916; Oseen, 1915;
Born and Wolf, 1970) for isotropic or crystalline media states that the in-
tegral in (8.21) has two parts, one of which satisfies the wave equation in
vacuum and exactly cancels (“extinguishes”) the incident field Ai:i.‘ The
other part satisfies the wave equation with propagation velocity ¢/n(wg),
where n(wi) is the refractive index and is related to the polarizability
through the relation

4r nf(w)-1 ew)—1

—N = = .

3 V) = T2 T do) + 2
In the proof of the theorem (Born and Wolf, 1970) it is shown that Aiu

is related to the average field Ay, by A} = Ay, +47P/3 = [n%(we) +
2)Ay, /3, so that (8.21) may be written as

(8.22)

AkA(r')e"“r'r"
=,

(8.23)

%[e(wk)w]Ah(r) = Ay (r)+4—17r-[e(wk)—1] / d*r'VxV x

or equivalently

2
VXV x A, + 7e(@)A, =0. (8.24)

4See also Wolf (1976) and references therein; Hynne and Bullough (1990) and refer-
ences therein.
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The fact that the continuum limit of equation (8.9) leads via the extinc-
tion theorem to the wave equation (8.24) plus appropriate (macroscopic)
boundary conditions is of course well known (Born and Wolf, 1970), but
does not appear to have been previously stated in the context of van der
Waals forces. This is somewhat unfortunate, for the extinction theorem
provides a foundation for the macroscopic theory of van der Waals forces
due originally to Lifshitz, which, as we have noted in Chapter 7, is rather
complicated and has sometimes been subject to doubts as to its validity.
In the present version of the theory, the macroscopic approach to van der
Waals forces reduces to (a) the solution of the classical Maxwell boundary-
value problem (8.24), and (b) the evaluation of the energy (8.10). An
example of this procedure, which underlies the theory of “cavity QED,” for
instance (Section 6.3), is given in the following section.

There is a great deal more that can be said about the extinction theorem
and the microscopic theory of dispersiog. We restrict ourselves to two
remarks. First, we note that A} is the Lorentz~Lorenz local field, as
opposed to the average field A, . kﬁle difference arises essentially from the
fact that the dipoles (atoms) of the medium are not in fact continuously
distributed, but have spaces between them. For nonisotropic media the
relation between the local and average fields is generally slightly different
from that given previously. Textbooks usually do not indicate that there
is not always a practical difference between the local and average fields;
loosely speaking, the local field correction arises only when the particles are
in fact spatially localized. Thus, whereas there is a local field correction
in a dielectric gas or in impurity atom absorption in a host crystal, there
is essentially no correction necessary for a plasma or for the conduction
electrons of a metal, and usually none necessary for exciton transitions in
pure crystals.®

We note also that the extinction theorem may be regarded as a nonlocal
boundary condition that the field must satisfy (Wolf, 1976). The cancella-
tion of the incident field is often regarded as “caused by the dipoles on the
boundary of the medium,”® because in the classical macroscopic approach
the term that cancels the incident field can be cast in the form of a surface
integral over dipole sources. Of course, from a microscopic viewpoint, all
the dipoles act to cancel the incident field and produce the reflected and
transmitted fields. A simple, fully quantum-mechanical model shows that
the cancellation is effectively due to dipoles within a depth at the surface

5See, for instance, P. Nozi¢res and D. Pines, Phys. Rev. 109, 762 (1958), and
references therein especially to the work of C. G. Darwin.
6J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 513.
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approximately equal to the field wavelength A.7 In particular, “The [re-
flected] radiation comes from everywhere in the interior, but it turns out
that the total effect is equivalent to a reflection from the surface.”®

8.4 Latent Heat: Macroscopic Theory

Latent heat, the energy required to vaporize a unit mass of material with-
out a change of temperature, is a consequence of intermolecular attractive
forces. For many substances, including liquid helium, inert gas solids, and
many organic crystals, latent heat results primarily from dispersion forces.
In this section we will consider a macroscopic theory of latent heat following
ideas due originally to Schwinger, DeRaad, and Milton (1978).

We will consider first the case of an atom at a distance z > 0 from a
half-space filled with identical atoms. The half-space (z < 0) will be treated
macroscopically according to the wave equation (8.24) plus the boundary
conditions at the interface z = 0 between vacuum and the half-space with
dielectric constant e(w).

For an atom at z > 0 we require, according to (8.10), the mode functions
in the vacuum to the right of the dielectric half-space. Consider a plane-
wave electric field

I _ 1 ik-
A{) (r) = vk r (8.25)
incident on the interface from the right. Such an incident field leads to a
reflected field

1 ks — kb (r
A(R) = 3 3 ik(R.r
kA1(r) ﬁvek’\ ks + kée ] (8.26)
where
k= (kl, kg, ka), (827)
kB = (ky, kz, —k3), (8.28)
2

ks = [=5 — k] — k3%, (8.29)

' w? 2 211/2
3= [f(w)g —ky — k3] (8.30)

‘These fields correspond to transverse electric (TE) modes. We also have
transverse magnetic (TM) modes with incident and reflected electric fields

AD ()= \_/__;7(9,“ « k/k)eKT (8.31)

"R. J. Cook and P. W. Milonni, Phys. Rev. A35, 5081 (1987).
8R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics
(Addison-Wesley, Reading, Mass., 1964), Volume 1, p. 31-2.
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R 1 €(w)ks ik

i)‘)z(l') \/_ (ek,\ X k(R)/k) (m) € r. (832)
The factors of 1/+/2 are introduced for mode normalization (Carniglia and
Mandel, 1971). The addition of (8.25) and (8.26) gives a TE mode, and
addition of (8.31) and (8.32) gives a TM mode:

A (l‘) |k;~l‘ eikaz + ks — ké e—ik;z (833)
lou fv ks + K !
1 .. ks
Ap,,(r) = ﬁve'k" T((egy X k/k)e™ 2 + (e, x kP /k)
6(“"’)k3 — ké -ikal
X (e(w)ka T e 1 (8.34)
where k) = (ki, k2). Thus >

1 ks — k5 \? ks — kj
A2 — 3 3 3
|Agn (x)l* = W [1 + (—ks n kg) +2 (—ks T k,) cos2kaz] (8.35)

and
1 [c? w?, [ e(w)ks — ki
N2 = = 2 _ ¥ 3
Ay (x)l* = v [w2 (21 = ) (—_—f(w)k;, T kf,)] cos 2k3z
1 e(w)ks — k3 2
tav [l + (c(w)k;; 5| (8.36)

where z is the distance of the atom from the dielectric. The z-dependent
part of (8.10) is therefore®
-k ., wi
(E(z)) = ——kZ(21rhwk)a(wk) [k TE, + —(2k_|_ - :2—)
A

X (EE:;—Q;_—?%)] cos 2k3z
V 53 Z / dks / d’ky (27hw)a(w) [ T k,

+ —2(2k1 - ‘c?) (ZE—:;—::%;?)] cos 2k3z (8.37)

91t is necessary to account for modes resulting from reflections of only right-going
waves. The modes resulting from left-going incident waves in the right half-space involve
Fresnel transmission coefficients times plane waves, and therefore their squared moduli
are spatially independent and they do not contribute to a position-dependent energy.
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in the mode continuum limit. The change of integration path as in (8.15)
(see note 2) allows us to write (E(2)) as

By = —32 [T de [ aektatieo [T + @4+ €0

N e(zfc)/c — nl] 2

e(ic)k + Ky (8.38)

which is identical to the result of Schwinger et al. (1978) Here!®

k=1VE+k2, (8.39)
Ky = /e (NEE + 2. (8.40)

Note that the limiting case of a perfect conductor may be obtained by
taking € — oo:

and

() — 5 [ [ aedED v R R
8124/ du “(7)(1+"+%u2)e"‘ : (8.41)

For long distances of the atom from the conductor we can replace a(iuc/2z)
by a(0) = @ and obtain the well-known Casimir-Polder interaction

3ahe
8wzt

For €(i€c) = 1 + 4nNa(ifc) = 1, (8.41) reduces to the result of Schwinger

et al.:

(E(2)) = - (8.42)

(E(2)) 5—8::,\, /0 " dgle(ige) — 11 / dbk— LK 4 k2 g‘*] ~2ns
(8.43)

For small z the leading contribution to (8.43) is

(E(z)) = - N ” duo(iu) = -i—va- (%) c, (8.44)

19Recall that ¢(ic) is real. See L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Pergamon Press, Oxford, 1966}, Section 62.



264 Casimir and van der Waals Forces: Elaborations

where, according to (8.17), the short-range interaction betwee.n two at:oms
a distance r apart is —C/r®. The result (8.44) can also bg derived jby inte-
grating over pairwise interactions between the atom outside the dielectric
and all the atoms making up the dielectric:

s

(E(z)) = —NC / dz' /0 @)y = g VO - (899)

Schwinger et al. have used the result (8.43) in a calculation of the latent
heat of liquid helium. If the latent heat ¢ is due primarily to the dispersion
force between atoms, then

oo o0 1
1= ~BON]p = o [ deletiee) 17 [ bk 5+ 26+ 560
° (8.46)
where E(0) is the z — 0 limit of (8.43), i.e., the limit in vfrhich the atom is
at the surface of the dielectric, and N and p are respectively the number
and mass densities. For liquid He Schwinger et al. use the approximation
(Sabisky and Anderson, 1973)

.05
1-w?/w?

ew)y=1+ (8.47)
with w, = 3.5 x 1016 sec=1. The divergence of (8.46) is avoided by cutting
off the upper limit of integration over the transverse photon momentum k
at k. = wc/c to obtain (Schwinger et al., 1978)

3
s 9—22—(.05)25% . (8.48)
p

Taking w, = 10'® sec™!, corresponding to k. = 3.3 X 107 em™~?, and using
p = 0.15 g/cm?® for liquid He, they obtain

qg=1 J/g, (849)

which they refer to as the Casimir contribution to the latent heat. The
experimental value they compare this to is about twice as large:

Qexp = 15J)/g . (850)

The same cutoff k. gives a predicted surface tension of liquid helium that is
about three times larger than the experimental value. Schwinger e't al. state
that “we can fairly conclude that the Casimir effect, a manifestation of van
der Waals forces, is responsible for a significant part of these phenomena.”
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The divergence of the calculated latent heat and surface tension in the
theory of Schwinger et al. is due to the macroscopic nature of the theory,
which does not account for the finite distances between atoms. (Note that
the transverse momentum cutoff k. is roughly on the order of an inverse
atomic spacing.) That is, the theory treats the dielectric medium as a
perfect continuum. Obviously the divergence of the macroscopic theory for
z — 0 can be anticipated from the fact that, for ¢ = 1, the interaction
of the atom with the dielectric is simply an integral over all the pairwise
interactions with the atoms forming the dielectric [equations (8.44) and
(8.45)]. Since these interactions diverge as the distance between the atoms

approaches 0, a continuum theory cannot give a finite latent heat or surface
tension.

8.5 Simple Microscopic Theory

Slater and Kirkwood (1931) obtained the following expression for the energy
of interaction between two He atoms separated by r(A):

E®(r) = [1.7e~458" _ OT—E)-] x 10710 erg. (8.51)

The first (repulsive) term is actually a fit to a more complicated repulsion
term resulting from wavefunction overlap at short distances. The second,
dispersion interaction term is about 30% larger than the London approxi-
mation —3hw,a?/4rS, with & = 2.0 x 10724 cm3 the static polarizability of
He.!! For r 2 3.16 A, however, corresponding to the peak of the pair dis-
tribution function for liquid He* at 7' = 0 K,!? the London approximation
differs from (8.51) by less than 10%.

X-ray scattering data indicate that each atom in liquid He* at T =0 K
has six nearest neighbors at separations r = 3.16 A.12 In the approximation
of retaining only nearest-neighbor interactions, each atom therefore partic-
ipates in six pairs of interactions. Since there are %(6.023 x 10%3) pairs of
atoms in a mole, the total cohesive energy per mole is expected to be

6%(6.023 x 102)E®)(3.16 A) = 200 J/mole = 50 J /g (8.52)
on the basis of this simple model. This is more than three times the exper-

imental value of 15 J/g. However, London (1930) noted that each atom in
liquid He can be regarded as vibrating in the “cage” formed by its nearest

'1C. W. Allen, Astrophysical Quantities (Athlone Press, University of London, 1955).
12W. E. Keller, Helium-3 and Helium-4 (Plenum Press, New York, 1969).
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neighbors and made the semiempirical estimate of 30 J/g for t}}e zero—point
energy of this vibration. Following London, we subtract this effectively
repulsive energy from (8.52) to obtain

¢=201/g, (8.53)

which is in fair agreement with the observed value.

For heavier atoms the zero-point energy contribution to the lat:ent heat
is negligible and the simple estimate of the dispersion energy as in (8.52)
can by itself provide a fairly accurate estimate of latent!hiat. g}on&der, for
instance, the example of solid Ne, where a = 3.96 x 10525 cm3, r = 3.1 A,
and the ionization potential fiw, = 21.56 eV. Assuming a close-packed fcc
structure with 12 nearest neighbors,!? we estimate

3hwea
q= %(12)(6.023 X 1023)—7476— = 1.7 kJ/mole, (8.54)

in good agreeement with the experimental value of 2.1 kJ /mole fc?r the
latent heat of sublimation of solid Ne. Similarly good agreement' is ob-
tained for the other inert gas solids. Surface tensions may be estimated
in the same fashion (Milonni and Lerner, 1992). For large molecules such
estimates fail, mainly because the molecular radii can be comparable to
or larger than intermolecul:r separations and consequently the London ap-
roximation (—3hw,a?/4r8) fails.

d Simple esE;imates of/ thiz type, due originally to London (1930), sjled
considerable light on the conclusion of Schwinger et al. (1978) t‘hat the
Casimir effect, a manifestation of van der Waals forces, .is responsible foF a
significant part of [latent heat and surface tension].” First, the conclusion
about the importance of van der Waals forces is undoubted!y'correct and
has in fact been well accepted for many years since the original work of
London. Second, the example of liquid He is unfortunately not a goo<‘i one
on which to base the conclusion that specifically mMacroscopic (Casnn.lr)
manifestations of these forces are important, since the repulsive zero-point
contribution is not included in the macroscopic theory of Schwinger etf al. or
that in the preceding section. Indeed it appears from the previous estimates
that this contribution by itself is larger than the attractive energy calculated
by Schwinger et al.* . '

We emphasize again that Casimir effects, referring spfaclﬁcally tq macro-
scopic manifestations of van der Waals forces, cannot without qualification

13, Kittel, Introduction to Solid State Physics (Wiley, New York,.1966).

14Detailed microscopic theories are available. Variational calculations of the g'round
state of liquid He* by W. L. McMillan, Phys. Rev. 138, A442 (1965) and D. Schiff and
L. Verlet, Phys. Rev. 160, 208 (1967), yield ¢ 2 12 J/g.
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be said to be responsible for cohesive properties such as latent heat and
surface tension. For when simple, pairwise London-type microscopic mod-
els are accurate, we can reasonably presume that nonadditive contributions
to the van der Waals interactions are small, in which case the macroscopic
theory, with its requirement of a transverse-momentum cutoff, is unneces-
sary.

For liquid He* and solid Ne we have, respectively, a/r3 ~ .006 and .013.
As noted in Section 8.2, this implies that the nonadditive contributions
requiring a macroscopic approach (or many-body theory) are small. We
conclude that “Casimir effects” then reduce to ordinary, pairwise van der
Waals interactions. For substances in which nonadditive effects are large,
the Casimir effect may indeed provide an accurate estimate of cohesive
energies, but we are unaware of any calculations along these lines.

Another point concerning the Ewald-Oseen extinction theorem in this
context is worth emphasizing. In the original Lifshitz theory, and in all
the subsequent work on “Casimir effects” I am aware of, the force between
dielectric media is obtained from electromagnetic modes determined by
Maxwell equations together with macroscopic boundary conditions. This
procedure, as opposed to a completely atomistic treatment of the dielectrics,
is justified if the most significant virtual photon wavelengths determining
the interaction are large compared with the spacing of the atoms in the
dielectric. In this case the continuum approximation is appropriate and the
extinction theorem, as originally obtained by Oseen (1915) for continuous
media, is applicable. The effect of all the multiple dipole scatterings by the
atoms in the dielectrics is then simply to enforce the laws of reflection and
refraction, giving the modes of the macroscopic theory. In the case of two
dielectric plates, for instance, the significant wavelengths are those on the
order of the spacing between the plates (Section 7.2), and if this is large
compared with interatomic distances, the macroscopic theory can be used

with impunity. Obviously the same kind of assumption underlies “cavity
QED” (Section 6.3).

Finally it should be noted that one of the first successes of the Lifshitz
theory was in explaining the wetting properties of liquid helium (Dzyaloshin-
skii, Lifshitz, and Pitaevskii, 1961). It turns out that, because the dielectric
constant of liquid helium is so small (¢ = 1.057), the Casimir force across
an adsorbed liquid helium film is generally repulsive, and therefore tends
to thicken the film. This explains the remarkable property of liquid helium
of climbing the walls of a beaker. The repulsive nature of the force, in this
case as a consequence of retardation, is also believed to account for the
spreading of pentane on water, whereas many other hydrocarbons expe-
rience attractive forces and consequently form lenslike globules on water.
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8.6 Casimir Forces at Finite Temperature

In our derivation of the Lifshitz expression for the force between t:lvo 1:c‘h-
electric slabs in Chapter 7 we assumed the vacuum st:?te for the field. For
finite temperatures the appropriate state of the field is the thermal state

with mean number of photons (Section 2.11)

8.55

for each field mode of frequency w.}® To generz?lize the Lifshitz expression
to this case, let us employ the symmetric ordering 'of the field operatotl"s in
which the source field makes no contributiop (Sect'lon 7.5). Then th<lel o:lcle
is due solely to the “external” field, which in Section 7.5 wa(,ft )act.ua. y ;
vacuum field, for which (Fg_)(r,w) -FS,"')(r,w')) = Q, where Fo" are ;lef'me !
by (7.140). The generalization of (7.141) with this expectation value n;)
equal to zero, i.e., with the field not in the vacuum state, 1s easily seen to
be

(E)y = ——;-/der(r) /:o dwa(w)(Fg*")(r,w)'FE,")(r,w)

+FO)(r,w) - FH(r,w)). (8.56)

Here (F$,+)(r,w) . FS,_)(r,w)) is proportional to (aw(O)al(O)) =n(w)+1

and likewise (F(o')(r,w) FH(r,w)) is prop'ortional to (al (0)%(0)2 = t:z(m)
(see, for instance, Appendix E). The spatially dependent mode 1;lnc 1tor:s
determining the dyadic Green function are the same regardless ?f the state
of the field. The generalization of (7.144) to the case n(w) # 0 1s thus

(E) = 2ih / d*rN(r) /000 dwa(w)[2n(w) + 1]T;;(r,T,w). (8.57)

As in Section 7.5 it is implicitly assumed that (Fg+)(r, w): F$ )(r, w')) and
(Fg')(r,w) . F(0+)(r,w’ )) vanish unless w = W', i..e.,. that dlﬁ'ere?t f{)ectllllerzlcli
components of the field are uncorrelated. This is the case for bo
vacuum state of the field and the thermal state. For the latter state n(w)
is given by (8.55) and accordingly

(E)y = Zih/darN(r) /000 dwa(w) coth (%) Ti(r,r,w)

t by kp.
15To avoid confusion with k = \/k2 + k% we denote the Boltzmann constant by kp
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_h s [T hw N
= o /d r/o dwle(r,w) — 1] coth (2kBT) Tji(r,r,w).
(8.58)

As noted in the preceding chapter, the Casimir force between dielectric
slabs comes predominantly from field frequencies w ~ ¢/d, where d is the
separation between the dielectrics. The finite-temperature correction to
Casimir forces will therefore be negligible when

1 1
ehw/ksT _ | = ehe/ksTd _ 1 << 1, (8.59)

i.e., when T << he/kpd. For d = 1 pm, this condition becomes T' << 2300
K. We conclude, therefore, that for d < 1 pm we can in effect assume T = 0.

For larger separations, or for large temperatures, the temperature cor-
rections may be significant. The quickest way to arrive at a more explicit
expression for the force in this case is to use (7.44) with £ = —iw and with
the factor coth(fw/2kpT) included in the integrand. For simplicity we will
assume ¢3 = 1, l.e., that the dielectrics are separated by vacuum. Then
K3 = —i(w/c)p [see equation (7.46)] and we obtain the force per unit area

NI
d) = ——m
F(d) o723 /1 dpp /0 dww

-1
x [Sl +eapsz+ f2pe—2iwpd/c _ 1]
S1—€1p S2 — €2p

-1
S51+Ps2+P _oiwpase hw
- th { —— } . .
[31 —ps2—p ! O\ ZkpT (8.60)

The change of integration involving w — # in Chapter 7 is useful here

as well.1® Now, however, we must account for the fact that coth(hw/2kgT)
has poles on the imaginary axis at

wp = 2min(kpT/h) = i, (8.61)

for all integers n. The deformation of the integration path so that it runs
along the imaginary w axis, therefore, involves semicircles about the poles
(8.61), as shown in Figure 8.1. The integration along the semicircle about
wy, contributes iw times the residue of the integrand at the pole w, for

16 The advantage of this transformation, of course, is that it eliminates the rapid os-
cillations associated with e~ 3'wpd/c
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Imo

Re o

.

Figure 8.1: The integration of (8.60) along the real w axis may be t'raps‘formed
to an integration along a quarter-circle, whose radius ‘exten_ds to |n'f|n|ty and
makes no contribution, plus an integration along the imaginary axis. In the
latter the poles at w, are avoided by integrating along semicircles centered at
the w,, # 0 and along a quarter-circle at w = 0.

n # 0, whereas for n = 0 the contribution from the quarter-circle is i7/2.
Thus

h [ 2mikpT ,3°°,3/°° 9
Fd) = —m‘(—r)i EEn . dpp

n=0

-1

S1n + €1nP S2n T €2n o2péndfc _ 1]

X
S1n — €inP S2n — €2nP

-1
+ [Sln t PSP 2pcadfc _ 1] ) , (8.62)
Sin — P San — P

where
Sin = \/Pz -1+ €in, €n= fj(ifn)’ ] = 1,2, (863)

and the prime on the summation sign indicates that a factor 1/2 mus.t. be
included in the n = 0 term. This result for finite temperature was derived

by Lifshitz (1956).}" .
The case of two perfectly conducting plates follows by taking €1, €2 — 00,

as in Section 7.2:
2k8T <= ,.3 /°° dpp?
F(d) = _——7I'6'3 — £n o ezpfnd/c -1

17Gee also L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media,
Section 90.
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_ kBT N, [ dyy?
T T 4rxd3 E ‘/M -1’ (8.64)

n=0

where £ = 4wkpTd/hc. At high temperatures, £ >> 1, the dominant
contribution comes from the n = 0 term:

kgT /°° dyy’ _  2.4kgT
0

Fd)= " 4nd3 e -1~ 4nxd3

(8.65)

Note the 1/d® dependence in this case. For low temperatures, z << 1,1t
may be shown that (Schwinger et al., 1978)

2 4
F(d)= -k [1 + 18 (kBTd> _ 0 (__"BTd) e—m/kaw] . (8.66)

" 24044 3\ he 7 \ he

In either case the magnitude of the force per unit area is increased from its
T = 0 value.

8.7 Experiments

As discussed in Section 7.2, experiments on macroscopic van der Waals
forces between dielectrics provided the stimulus for the Lifshitz theory.
These experiments unveiled the inadequacy of theories based on pairwise
additive intermolecular van der Waals forces.

The literature on experimental studies of van der Waals forces is enor-
mous, and here we cannot begin to even summarize it. The Lifshitz theory
bears on many areas of colloid science, for instance, and “The impetus
given to colloid science by the appearance of the Lifshitz theory, and the
subsequent developments that it led to, can hardly be overestimated” (Is-
raelachvili and Ninham, 1977). We have already discussed in very simple
terms how the latent heat of some substances provides a direct measure of
the intermolecular van der Waals forces (Sections 8.4 and 8.5). Here we
will focus primarily on perhaps the most directly measurable manifestation
of van der Waals forces, namely the force between dielectric bodies. The
Lifshitz theory was of course developed to deal precisely with such forces.

Discussion of the many other manifestations of van der Waals forces
would take us much too far afield from our study of the electromagnetic
vacuum. The force between two dielectric plates is close enough to the
example “every physicist” knows is relevant to electromagnetic zero-point
energy — the Casimir force in the case of perfectly conducting plates —
that it is not difficult to keep the relevance to the vacuum field in mind.
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The derivation of the Lifshitz force given in Section 7.2 brings out in similar
fashion the relevance of zero-point field energy to the case of dielectrics. Of
course all the manifestations of van der Waals forces can be traced to the
electromagnetic zero-point field, since the van der Waals force between any
two molecules can be regarded as a direct consequence of the zero-point,
vacuum field.'®

The two essential quantities that must be measured to determine macro-
scopic van der Waals interactions between dielectrics are the force and the
distance between the dielectrics. These are hardly easy to measure, since
the forces are tiny and perceptible only at very small separations. The
first successful experiments were reported by Derjaguin and Abrikosova in
1951 (see Derjaguin and Abrikosova, 1957; Derjaguin, 1960). In these ex-
periments the measured forces were between a glass plate (4 x 7 mm) and
spherical lenses with radii of curvature R = 10 cm and R = 25 cm. Such a
configuration is more easily adjustable than that of two flat plates and also
allows the closest distance of separation to be measured optically from the
diameter of Newton rings. From the measurement of the force between the
lens and the plate, one can infer the interaction energy between two flat
plates using the “Derjaguin approximation,” which we now briefly derive.

Consider two spheres with radii Ry and R, and separated by a distance
H << Ry, Ry (Figure 8.2). The force between them is

F(H) = / drrdrf(2), (8.67)
z=H

where f(z) is the force per unit area between two flat surfaces. We are
assuming that the force on the circular area 2wrdr on one sphere is due to
locally flat surfaces on the other sphere at distances z = H + z1 + z2 away
(Figure 8.2); this is permissible so long as Ry, Ry >> H. Now r2 2 2Rz =
9R,zs, 5o that z = H + 3r2(R{' + R;') and rdr = (R7'4+ RyY)"ldz =
[R1R2/(Ry + R3)jdz. Thus we have the Derjaguin approximation

F(H) = 2n (}g%z?) /: dzf(z) = 27 (%) u(H), (8.68)

where u(H) is the interaction energy per unit area between two flat surfaces
separated by H. For Ry = R and Ry = oo, corresponding to a sphere of
radius R and a flat plate, we have (Derjaguin and Abrikosova, 1957)

F(H) = 2nRu(H). (8.69)

18Recall the discussions in Chapters 3 and 7, and especially the remarks following
equation (3.92).
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Ry R

Z H .2

Figure 8.2: Geometry for.deriving the Derjaguin approximation to the force
between two spheres of radii R; and R, separated by a distance H << R, Rs.

’I.‘hls.result may also be derived under the assumption of pairwise addi-
tive intermolecular forces, but it has a more general validity so long as
Rl,Rg >> H. The importance of the Derjaguin formula (8.69) is that
1t. relates the force between a sphere and a flat plate to the theoreticall
simpler force between two flat plates. The force between the latter is givei
approximately by the Lifshitz theory.

The measurement of the force is complicated by its short range and
the tendency of the surfaces to adhere when H is very small. The balance
used to measure the force must therefore have both high sensitivity and a
large restor‘mg torque. In the early experiments of Derjaguin and others
the separations H ranged between .07 and 0.5 pum. The force was measured
by.an electrical negative feedback technique in which a displacement of a
kmije.—ed'ge balance beam produces a current acting to restore the beam to its
equilibrium position, and a measurement of the current then determines the
force. The negative feedback mechanism also reduces the vibrational period
of the balance, so that equilibrium is established nearly instantaneousl
(Derjaguin and Abrikosova, 1957). Y

‘ The data of Derjaguin, Rabinovich, and Churaev conflicted with es-
1.‘|mates based on pairwise additive intermolecular forces and provided the
first .“good quantitative agreement” with the predictions of the Lifshitz the-
ory in t.he retarded regime (Derjaguin et al., 1978). Precise quantitative
comparison with the Lifshitz theory was complicated by the appearance in
the t.heory of the dielectric constant over the entire range of frequencies
and in particular by a lack of data on high-frequency absorption spectra. ’

Farly experiments between flat glass plates (area 1 cm?, separations
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between 0.6 and 1.5 pm) were carried out by Overbeek and Sparnaay (1954).
In these experiments one of the plates was attached to a spring and the
displacement Az was determined by a capacitive method. The force was
then calculated from the force constant K of the spring (F = KAz). Due
to the effects of residual charges,!® however, the forces were overestimated
(Sparnaay, 1989).

Sparnaay (1958) performed the first experiments to test the Casimir
theory of the force between conducting plates. The force between cleansed
metal plates (chromium, chromium steel, and aluminum) inside an evacu-
ated chamber filled with nitrogen gas was again determined from the deflec-
tion of a spring; the spring in these experiments was connected to an alu-
minum beam attached to one of the plates. The deflection was determined
from the change in the capacitance of a capacitor connected to the beam
(see Sparnaay (1958), Figure 2). Great care was taken to eliminate the ef-
fects of dust particles, which appeared to give rise in some cases to repulsive
forces. For the experimental plate separations between 0.5 and-2 pm, forces
between about 0.2 dyne/cm? and about .003 dyne/cm? were measured, “in
qualitative agreement with Casimir’s prediction” [equation (7.1)]. Although
Sparnaay’s experiments are often cited as experimental confirmation of the
Casimir force between conducting plates, Sparnaay himself was more cau-
tious, writing in the abstract of his paper that “The observed attractions
do not contradict Casimir’s theoretical prediction.”

Tabor and Winterton (1969) reported the first measurements of forces
between dielectrics for separations so small that retardation effects are neg-
ligible. For H < 500 A the polished surfaces used in previous experiments
were still sufficiently rough that their variations were comparable to H.
Tabor and Winterton used extremely smooth thin sheets of mica on glass
cylinders of radii = 1 cm. They were able to probe the transition between
retarded and nonretarded forms of the Lifshitz force, which they determined
to occur between H = 120 and 500 A.

Hunklinger, Geisselmann, and Arnold (1972) developed a “dynamic
method” for measuring macroscopic van der Waals forces, or actually the
derivative of the force with respect to the distance of separation. We quote
from their clear presentation:

A small plate (0.1 mm thick, 2 mm? area) and a plano-convex lens
(radius of the spherical surface R = 250 mm) are used as specimens.
The plate is cemented to the membrane of a modified condenser mi-
crophone (see Fig. 1) and the lens is mounted on a low frequency
mechanical vibrator of a construction similar to that of 2 loudspeaker.
When the lens is oscillating a periodically modulated van der Waals

19Recall the remarks near equation (7.3).
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force acts on the plate. This dynamic force causes oscillations of
the membrane of the microphone, producing an alternating output
voltage which is amplified and recorded. The distance between the
plate and the lens can be determined interferometrically by illumi-

}mting the specimens and observing the Newton fringe pattern which
is generated.

The'ampliﬁed signal was related to the derivative of the force with respect
to distance. Results “in good agreement with theory” for borosilicate glass
were reported for distances between .08 and 1.2 um.

Van Blokland and Overbeek (1978) measured forces between a chromium
plate ar.ld a chromium sphere at distances between 0.13 and 0.67 um. The
separations were determined from the capacitance produced by the objects
Of particular interest here is the comparison that van Blokland and Over-'
beek made of their data to the predictions of the Lifshitz theory. For this

pul;‘pc;se they used the following expression for the dielectric constant of a
metal:

o wp w}
(i) =1+ T ion +”£w2 + Z TTE T E;’+ a (8.70)

vt.'h_ere wp is the plasma frequency, wy = w;‘: /4rno,, 0, is the specific conduc-
tnvnt;yi and the sum is over the absorption bands of central frequency wj,
halfwidth g;, and.strength w?p. For chromium one absorption band (actu-
ally two overlapping bands) at w; = 3.0 x 105 sec~! provided a sufficient
approx1mation to the sum. Van Blokland and Overbeek concluded that “at
distances .between 132 and 670 nm the measured force and the cal‘culated
force are in excellent agreement when the absorption band of chromium is
.taken into account in the calculation of the force. Surface roughness ex-
Fsts and it prevents measurements at small separations but has hardly any
influence on the measured forces.”

The reader is referred to the surveys by Derjaguin et al. (1978) and
Sparnaay (1989), and the references therein, for details about the many
beautiful experiments on van der Waals forces between macroscopic bodies.

8.8 The Casimir—Polder Force: Experiments

An example considered by Casimir and Polder (1948) to illustrate the effect
of retardation is the force on an atom at a distance r from a conducting
plane. At short distances the potential V(r) varies as r~3 and is easily
understood from the interaction of the atomic dipole with its image. For
Iarge r, however, the interaction falls off as r=4. As shown in Section 3.12
the retarded Casimir—Polder interaction may be interpreted as the char;ge,’
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due to the presence of the conducting plane, of the Stark shift of the atom

in the vacuum field.
The r—3 interaction at short distances is often referred to in the atom-—
surface context as the van der Waals interaction.?® The interaction between

the dipole p and its image dipole p; is

1p-pi—3(Z-P)(Z-Pi)
3 o . (8.71)

The factor % appears because the forces involved in bringing the dipole from
oo to r act only on the dipole, not on its image. For dipole orientations
normal to the mirror surface, i.e., for p = p:2 = pL, wehave p; =P = PL,
whereas for orientations parallel to the surface, p;i = —p = —Pp||- Thus

V(r) =

_ ! 2 2
V(r)= 161,3(—P|| -2p1), (8.72)
and for an atom in its ground state |g) this becomes

—Iglr—a [(glpﬁly) +2(glpl Ig)] : (8.73)

where p = pjj +PL Is the dipole moment operator.

The potential (8.73) implies a force o r—4 attracting the atom to the
surface. The van der Waals interaction holds, provided the atom is not
so close to the surface that complications associated with the microscopic
surface structure come into play. This typically requires r to be a few tens
of Angstroms. Application of (8.73) also assumes that r is small compared
with characteristic transition wavelengths of the atom, so that retardation
is negligible.

Shih and Parsegian (1975) studied experimentally the deflection of Cs,
Rb, and K atomic beams by gold surfaces, and obtained results consistent
with the r—3 van der Waals interaction.

Anderson et al. (1988) achieved very much larger van der Waals forces
using highly excited Cs and Na atoms: the electric dipole moment of such
a (Rydberg) atom scales as the square of the effective principal quantum
number n, and therefore the van der Waals force scales as n*. Furthermore
the Rydberg atoms have large transition wavelengths, and so the range of
their van der Waals interaction with the surface is substantially greater
than that for ground-state atoms.

The experiment of Anderson et al. involved passage of a beam of Ryd-
berg atoms through an 8 mm channel formed by two gold mirrors separated

v(r) =

2074 is also called the Lennard-Jones interaction, since it was considered by J. E.
Lennard—Jones, Trans. Faraday Soc. 28, 333 (1932).
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by a variable distance between 2.1 and 8.5 um. Atoms with larger n val-
ues are attracted to the mirrors more strongly than atoms with smaller n
values’, and so fewer of them escape the channel without sticking to one of
the mirror surfaces.?! One can define a maximal n for which an atom can
pass th.rough the tunnel. To deduce how this n,, scales with the mirror
separation w, consider an atom of mass M and effective principal quan-

tum number n m.ltlally at a distance z, from a single mirror surface. From
energy conservation we have

1 dz\?
M (E) +V(2) = V(z) (8.74)

ifdz/dt =0 at t = 0. Since V(2) e2a2n?/162° ..
i i ) ~ —€ G, 62°, (8.74) implies th
time it takes for the atom to reach the mirror surfa.c(e 1s ) implies that the

\/Mz,?/2

t~o —
nlea, (8.75)

Nf)w if the atom. has an initial velocity v parallel to the mirror surface, it
will move a longitudinal distance ’

VIR

L=vt~
v wioa, (8.76)
before striking the surface. This implies the relation
nif? o Mv?
- ~ a2 (8.77)

f;)r atoms Passing a mirror of length ¢ without colliding with the mirror.

or two mirrors separated by a distance w, forming a channel of length £

:v;sgplace Z, by w/2 and Mv? by kT in (8.77) to obtain (Anderson et al.,,
ni 2 < kT

w5 —_— "(600)2 ’ (878)

where 7 is a dimensionless factor of order unity and T' (~ 350 K) is the tem-
perature of the oven source for the atomic beam. Thus n,, < w%/4, a scaling

nﬁl'med by umerical s g l
h‘\w CO n Tl 1 lmulatlolls assumin Cla.SSlcal t[a ectOIleS fOI

I
n,,i:'.. ::t::n:);;-o:::f:t t't:or th: annlyn; of the experimental results that, independent of
itation, atoms striking the mirrors adhere, without * i i
te o ut “bo D
assumption is supported by other experimental evidence. ’ uncing” This
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Figure 8.3: Maximal effective principal quantum number npy v.s. the scaled
channel width w= w[8 mm/£m]*/5[T/(350 K)]'/3, where b is the largest
channel length for which there is transmission. The solid curve is theore.tlc'al,
and the circles are experimental values for Cs atoms, corrected for radlatlv.e
decay in the channel. The open circle is estimated from ground-state experi-
mental results of D. Raskin and P. Kusch, Phys. Rev. A9, 652 (1974). From
A. Anderson et al. (1988), with permission.

In the experiments, Rydberg Cs or Na atomic beams were exc1tefl to
prescribed n levels using two-step excitation with two lasers. The mfa.x1mal
principal quantum number ny, was defined as the value of n for which the
fraction of atoms escaping from the channel was reduce'd to 1%. ‘(Th'e n
values of escaping atoms were determined by stjatic elf:ctrlc field 1on1za.tlor.1,
whose probability depends upon n, and detection with an.electron mult.l-l
plier.) Figure 8.3 shows experimental results for nm fc;r‘ldlffer‘ent channe
widths w. The results are compatible with the ny ocw / scaling la.v?', t')ut
are not accurate enough to rule out, say, an nm x w sca.lu.lg. The Qevmtlon
from the van der Waals theory at the larger gap separations in Figure 8.3
is believed to be due to stray electric fields (Anderson et al., 1988).

Deflections of ground-state atomic beams in similar.expenments haYe
been observed by Hinds et al. (1991). The atoms escaping the chapnel in
these experiments were detected by excitation to 'the n= 14 level with two
lasers, followed by field ionization and ion counting. Figure 8"4 compa,?e:l
experimentally measured transmission factors vs. the ghannel W}dt:h w wit
theoretical calculations based on the van der Waals r~ at}d Casnmlr—Pol'der
(“QED”) r~* interactions with the walls. Also shown is the geometrical
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Figure 8.4: Relative transmission factors divided by the square of the channel
width obtained by Hinds et al. for ground-state Na atoms. The dashed curve
is based on purely geometrical considerations, ignoring atom-wall interactions.
The curves labelled vdW and QED are theoretical predictions based on the van
der Waals and Casimir—Polder atom-wall interactions, respectively. The crosses
are the experimental results, normalized to agree exactly with the QED curve
for a channel width of 2700 nm. From Hinds et al. (1991), with permission.

transmission factor obtained assuming that the atoms do not interact with
the walls. It is clear from the experimental data that there is an atom-
wall interaction, but the data are not sufficiently accurate to distinguish
between the van der Waals and Casimir—Polder interactions.

Recent experiments of the type just described have measured the atom-
surface interaction spectroscopically as a position-dependent level shift (San-
doghdar et al., 1992), and have succeeded in providing the first detailed
quantitative confirmation of both the van der Waals and Casimir-Polder
interactions (Sukenik et al., 1993). In the latter experiments the escaping
ground-state sodium atoms are excited to the 12s level with two lasers and
field-ionized and counted as in the earlier experiments (Hinds et al., 1991).
The lasers are focused sufficiently tightly that all the excited atoms have
traversed the cavity within a width of about 2-3 nm. For cavity widths
below about 1.2 pm, the data fit the theoretical predictions based on the
('asimir-Polder interaction very well, as shown in Figure 8.5, and confirm
that the interaction indeed varies as r—* rather than r—3 in the retarded
regime. It is important to note that both the van der Waals (or Lennard-
Jones) and Casimir-Polder interactions are confirmed with essentially no
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Figure 8.5: Opacity (reciprocal of transmittance) .measured by Su}(evlkpetldal.
The three curves are theoretical opacities assuming (a) the Casimir—Pol e:
interaction, (b) the nonretarded van der Waa|s'|nteract|on, and (¢) no aéom

wall interaction. The results are plotted re!atwe to tlje values at a 0.6 pm
cavity width. From Sukenik et al. (1993), with permission.

adjustable parameters in these experiments and their theoretical simula-

ions as outlined previously.??

tlOnl;xperiments oK; a different type, that might also e'na.ble a.study. of the ;'an
der Waals and Casimir—Polder forces, involve the mteraftlon w.mth ag an
surface of slowly moving (T ~ 1 pK) atoms from an “atomic founta?n
(Kasevich et al., 1991). In these experiments the atom—surface 1nteract1tonl
includes a repulsive potential due to an evar{escent field pro_duced by g.c; :.
internal reflection at the glass surface, leading to a bouncmg probabili by
that depends on the frequency of the evanescenf, wave. Atoms in the ?tormc
fountain are velocity-selected so that they colhde. with the glass sur alce':s
their trajectories begin to turn over due to'gra.v1t)", a‘n('l the final veloaty
of the bounced atoms can be determined using an 10nizing laser beam.

22The experiments involve a number of complications, p'erha.ps the most ;].Jfﬁcul't o:
which are stray electric fields. The reader is referred to the cited literature for discussion:

of how the Yale group overcame these difficulties.
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8.9 Casimir Effects in Atomic Spectroscopy

The Lamb shifts in the energy levels of an atom can be ascribed in large
measure to vacuum field fluctuations (Chapter 3). Spruch and Kelsey have
described another effect of vacuum field fluctuations on energy levels of a
single atom. As in the case of the Lamb shift and van der Waals interactions,
the effect was first obtained by conventional perturbation-theoretic methods
(Kelsey and Spruch, 1978) and was later rederived more simply from the
perspective of vacuum field fluctuations (Spruch and Kelsey, 1978).
Imagine a stationary electron at a distance r from an atom with polar-
izability a(w). From the energy —1aE? (Section 3.8) with E = er/r3 the
Coulomb field of the electron, we obtain the polarization potential

1 ae?

V() =—3~7 (8.79)

where a = «(0) is the static polarizability. Bernabéu and Tarrach (1976)
found with a dispersion-theoretic approach that there is an additional con-
tribution to the polarization potential due to retardation; for large r they
obtained the leading correction

11hea
4rmers

Viet(r) = (8.80)
Using perturbation theory, Kelsey and Spruch (1978) obtained the same
retardation correction to the polarization potential between an electron
and a charged polarizable system. It is important to note that, in contrast
to the effect of retardation on the van der Waals interaction, Vit (r) is an
addition to the nonretarded potential (8.79) rather than a replacement at
large r.

Of special interest here is Spruch and Kelsey’s derivation of V. from the
perspective of zero-point electromagnetic energy (Spruch and Kelsey, 1978).
In fact Spruch and Kelsey have described a simple approach applicable to
other retarded interactions associated with vacuum field fluctuations. To
describe this approach we first recall the expression (3.74) for the interaction
between two polarizable systems. The contribution to this interaction from
a single field mode of frequency w is

U(w,r) ~ az(w)Es(w,r2) - E12(w, r2) (8.81)

in the notation of Spruch and Kelsey, where ay(w) is the polarizability of
system 2, Ep(w,rz) is a background field, E;_3(w, r3) is the w-component
of the field from system 1 at the point r; of system 2, and r = r; —ry. The
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interaction due to a continuum of field modes, with N(w)dw modes in the
interval [w,w + dw], is

U(r) ~ /dwN(w)U(w,r)
= /dwN(w)az(w)Eb(w,rz) 'El_.z(w,l‘z). ) (882)

Following closely the approach of Spruch and Kelsey (1978), we ignore signs
and factors of order unity, and assume for Ej_.a(w,r2) the general form

Ei_2(w,r2) ~ [01(w)Es(w, r1)/r3)g(wr/c). (8.83)

This expresses E;_2(w,r2) as the field from the dipole moment ay(w) x
Es(w, 1) induced by the background field, with g(wr/c) afunction of order
unity over the significant range of wr /e, and such that g(z)/z remains finite
as £ — 0. Thus

U(r) ~ ;13 / doN (@) (@)as(@)Ea(w, 72) - Byw, r)g(wr/c).  (8:84)

For r > c/w we can expect there to be substantial cancellations associ-
ated with the oscillations with wr/c of the dipole fields, and so we replace
Es(w,r1) - Ey(w,r2) by 0 for w > ¢/r and by E(w,r3) forw < ¢/r (Spruch
and Kelsey, 1978). Then

cfr
U ~ % /0 doN (@) (@)ar(@)E3(w, r2)glwr/c).  (8:85)

Now the case of interest is that in which the “background” field is the
zero-point, vacuum field with energy density E}(w,r) = hw/V for each
mode and, for free space, N(w) = Vw’dw /c3. In this case we obtain the

Spruch-Kelsey approximation

c/r
U(r) ~ @%_/; dww?ay (w)as(w)g(wr/c). (8.86)

This simple result, based on the interaction of two polarizable systems
in the polarizing vacuum field, allows us to obtain various retarded inter-
actions in a neatly unified fashion. For two neutral atoms, for instance, we
have the retarded dipole-dipole interaction

h cfr
Uga(r) ~ 513'0102/0 dwwg(wr/c)

he ! a
= Fmm dzzg(z), (8.87)
0
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.w.here we have replaced the polarizabilities a;(w) by the static polarizabil-
ities a; = a; (0) under the assumption that ¢/r is much smaller than any
transition frequency contributing significantly to the polarizability. This

3 .
asSllIllpthll Of Course, deflnes a lorlg range Ietarded tel arCt
g ) in on If we

1
d 3 ~
/0 zz7g(z) ~ 1, (8.88)
then
Uaa(r) ~ &
dd 7%, (8.89)

which is the retarded van der Waals interaction (3.91) except for the factor

23/4m. Wi : .
fol{ows; e can compare (8.87) to the expression (3.89) from which (3.91)

he e
V(r) = ——aa /o dzz°G(z), (8.90)

where G(z).is defined by (3.86). We can see, then, that the Spruch-Kelse

approx1matlon (8.86) is fully justified except, as stated, for factors of orde};

unity. Indeed the argument leading to equation (3.91) can easily be seen

to be a more detailed version of that of Spruch and Kelsey, accounting fo

the numferica.l factors arising from angular integrations. , 8
'CtOILSIder next the interaction between a polarizable system and a free

oint cha izabili
an (8'86r)g§gczinr2:ss m. For the latter the polarizability ay(w) = —¢?/muw?,

U th c/r
a(r) ~ —_mc3r3/0 dwwa;(w)g(wr/c)

o he’a; [*
= _“/0 dzzg(z) (8.91)

mer®

if we again replace a;(w) by its low-frequency approximation a;. Assuming

1
dzz ~1
| dzza@)~1, (8.92)
we have (Spruch and Kelsey, 1978)

hqzal

Uaa(r) ~ (8.93)

mcrd

for the retarded interaction between a polarizable system and a free charge

Fxcept for the fact ... . . .
(H.SOF))_ e factor 11/4, this is just the interaction Viet(r) given by
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Spruch and Kelsey have given similar derivations, based on (8.86), o;'
other retarded interactions involving free cha'rges and n‘eutral or charsgg
polarizable systems. Here we will focus attt?nt}on on the 1nt.eractlon‘ (8.80),
since it provides a novel example of a Casimir-type eﬂ"ec_t. in a.to‘mlc sPe;:l;
troscopy. Kelsey and Spruch (1978) suggestefi that this mteractlo? r:ng
be observed in the energy levels of highly exc1t:ed Ryflbe?rg states_oha otms.
In this case the (charged) polarizable system 1s the ionic core of the a 012
and the “free” charge is an electron in a hig_hly‘ excited 'state. Kelsey zlm
Spruch considered the case of a helium-like lonic core W}th. the outer ::) :c-l
tron in a state with n > £ >> 1, where n and £ are thg principal :(mdfor ital
angular momentum quantum numbers. From a deﬁmled anafly51s of a per-
turbation expansion they concluded that the effective 'potentla.l between an
electron and a polarizable system of charge (Z-1)eis

— 2 11 h/me
(Z-De? lee |;_ ——-——] 4o 8.94)
V(r):——_-r_———2r4 1 2r T (
-6
The first term is the Coulomb interaction, and ... denqtes ‘terms of or@er r
and higher. Of interest here is the second term, which is the pola.r'lzatlon
potential modified by the retarded potential.VreF(r). We r}ote again t:;llz:t
Viet(r) 1s an additive correction to the polarization potential (8.79). e

shift due to Vier(r) of the energy of an electron in state [ném) is
11 hela

AE = e

(nbm| < |ném), (8.95)
r

electron with large n and £ (say, n = 15 and £ = 14) this
:lrlli(;tf?sr (?fl::,((li:iezegz /he)3me? /n'® (Kelsey and Spruch, 1978). The retarded
contribution to the polarization potential has been f:onﬁrmed by dispersion-
theoretic methods (Feinberg and Sucher, 1983; Feinberg, Sucher, and Au,
198?\); noted in Chapter 3, the condition for retardation to be impc.)rtant
is roughly that r exceed 137a,. At a separation o{: 137a, the ?orrec;;on‘ to
the polarization potential due to the second term in brackets in (8.94) is

u/in (fi) 110, (8.96)
2w \ mc he/ a,
and so the effect of Vie(r) is obviously very small. Neverthelfess Lunfigen
et al. have been able to measure certain level shifts to such high precision

: 23
that a contribution from Viet(r) can be inferred.

23For a description of the experimental method we x.'efer the reader to Lux;de}:en (19913
and Hessels et al. (1992). The latter article summarizes the comparison of theory an

experiment.
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These experiments measure fine-structure intervals of high angular mo-
mentum states of Rydberg He atoms with n = 10, for which the separa-
tions of states of different orbital angular momentum have been calculated
very accurately without the long-range, retarded Kelsey—Spruch interaction
(Drachman 1982, 1985, 1988). The differences between the measured and
calculated values were compared with the energy shifts expected from the
Kelsey—Spruch interaction. It was found that these differences are about
an order of magnitude smaller than simple estimates of the Kelsey—Spruch
energy shifts (Palfrey and Lundeen, 1984). In other words, the experimen-
tal results suggested that any effect of a retarded polarization potential is
substantially smaller than indicated by the Kelsey—Spruch theory.

However, further theoretical work revealed that the complete interaction
Viet(r) that approaches the Kelsey—Spruch form asymptotically is in fact
about an order of magnitude smaller than the asymptotic interaction for
the electron-core separation r ~ 100a, appropriate to n = 10 states of He
(Au, Feinberg, and Sucher, 1984, 1987; Babb and Spruch, 1988, 1989). It
was then noted that the values of Viet(r) for small r were large enough
to ruin the agreement between theory and experiment for low-lying states
(Lundeen, 1991). This led to the realization that the first two terms of
the short-range expansion of Vi.¢(r) are in fact already included in the
“standard atomic theory” of helium (Au, 1989; Au and Mesa, 1990; see
also Lundeen, 1991).

The most accurate theory for comparison with experiment appears to
be that of Drake, which includes both a short-range approximation to Vet
and radiative corrections (Drake, 1990; Goldman and Drake, 1992). In
addition to high-precision calculations obtained by variational methods,
Goldman and Drake (1992) show that the Lamb shift is about an order of
magnitude larger than the Casimir effect, and must be well understood for
the comparison of theory and experiment. There are statistically significant
differences between theory and experiment that are not yet understood, but
nevertheless the data confirm, to an accuracy better than 10%, the effect
of retardation in Rydberg atoms (Hessels et al., 1992).

Regarding the interpretation of the experiments, it is worth mentioning
that Goldman and Drake (1992) derive the asymptotic expression for the
Lamb shift by assuming the Rydberg electron to produce a field that acts
to modify the Lamb shift of the 1s electron. From this point of view, the
experiments of Lundeen et al. probe the effects of external electric fields
on the one-electron Lamb shift.

It is also interesting that the level shifts have been interpreted and
calculated from two points of view — the “standard atomic theory” that
treats the Rydberg helium atoms as just another two-electron system, and
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the “long-range interaction” picture just optlined. Although the asyrl?pltotlc
expansions used in the latter are not sufﬁ?leptly accurate for‘l ~T,t (1 o:l}gl;-
range interaction picture does give predictions that are fairly close to the
calculations of Drake et al. ) fuct
The Kelsey-Spruch suggestion that the long-r.ange vacuum fluc u:—
tion” contribution to the polarization potential might be observ.ed in the
spectroscopy of Rydberg atoms has thus stimulated pot only precise elxper-
imental studies of the fine structure of Rydberg helium, but also a ¢ eare:
understanding of the more traditional aspects of the theory. At presen
there are no experiments that correspond to glectron'—cor‘e separa'tlo(rilsbr
large enough to measure the original asyr'nptotlc contribution obtaillne y
Kelsey and Spruch. However, the extension of the theory to sma. e{) sep(;
arations has led to related predictions (Au et al., 1984, 1987'; Bab nar;
Spruch, 1988, 1989) that have in fact been corroborated experimentally to

~ 10% precision (Lundeen, 1991).

8.10 Casimir’s Electron Model

Consider a spherical conducting shell of radius a. The zer'o-point field
energy E(a) = %Ep hwp can be expected to come predominantly from

frequencies w ~ c/a, so that
he (8.97)
E(a) = —C2a .

Here C is some dimensionless factor which, if positive, means that there 18
an inward, attractive force on the shell due to the vacuum field, analogous
to the Casimir force between parallel conducting p}ates. N

Casimir (1953) suggested that an electron might be envxs{oned as a
spherical shell of charge e and that the attractive force a.ssoc1‘ated w?th
(8.97) might exactly balance the outward, repulsive force associated with
the electrostatic self-energy [equation (5.18)]

U= i . (8.98)
2a
. . 4

The force per unit area associated with (8.97) is 'F((;) = —4C(hc/87ra 21, a.nd
the force per unit area associated with (8.98) is e?/8wa*. The condition
that these two forces balance each other is then

C=o. (8.99)
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In other words, Casimir suggested that an attractive force due to elec-
tromagnetic zero-point energy might provide the so-called Poincare’ stress
necessary, from a classical perspective, to hold the electron together. The
particular value e of the electron charge according to this model is just the
value that allows the repulsive and attractive forces to balance each other;
the vacuum field and the electrostatic self-interaction together account for
charge quantization. In particular, the value of the fine structure constant
according to this “admittedly very crazy” model (Casimir, 1953) is just the
number C appearing in (8.97), and is independent of any presumed electron
radius.?*

Unfortunately this fascinating model appears to fail because the factor
C in (8.97) turns out to be negative, i.e., the force associated with the zero-
point field energy in this case is repulsive rather than attractive. This result
was first obtained by Boyer (1968). Using mode functions appropriate to
the spherical symmetry of the problem, Boyer obtained [see also Davies
(1972)]

C=—0.09. (8.100)

Thus C not only has the “wrong” sign, but is also about 12 times larger
in magnitude than the fine structure constant. Similarly, Balian and Du-
plantier (1978) and Milton, DeRaad, and Schwinger (1978) have obtained
C = —0.09235. Candelas (1982) has argued that the more recent calcula-
tions are in error to the extent that they omit a cutoff-dependent contribu-
tion to the zero-point energy. He obtains

he B[
. E(a)=0.092357¢ _ _ ‘
(a) = 0.092355= — = /0 dv | (8.101)

where it is implicit in the second term that a high-frequency cutoff is de-
termined by the internal structure of the shell, which is not dealt with in
the “macroscopic” electromagnetic theory (recall the remarks in Sections
8.3 and 8.4). Of course the second term in (8.101) is independent of the
radius a and so does not affect the calculation of the force.

These calculations are rather complicated, and consequently will not be
reproduced here. There does not appear to be any simple explanation for
the repulsive character of the zero-point energy of a spherical shell.

Casimir has remained “reluctant entirely to give up the idea that the
value of fic/e? has something to do with a compensation of zero-point energy

and electrostatic energy ... ,” and has speculated on another possibility
(Casimir, 1978):

#4See the remarks and questions by Pais, Rosenfeld, Peierls, Dirac, Fierz, Heisenberg,
and Belinfante appearing after the brief discussion by Casimir (1953).
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Figure 8.6: Number of papers per year, according to Science Citation In-
dex, citing Casimir's original paper “On the Attraction between Two Perfectly
Conducting Plates,” Proc. Kon. Ned. Akad. Wetenschap 51, 793 (1948).

Suppose geometry involves somehow a shortest length R and also
a largest wavenumber k. The product kR would ha\./e to be of order
unity, but its exact value would depend on the details of the theory.
Then an attempt to create a point-singularity where the. elect.romag—
netic field disappears will create disappearance in a region with vol-
ume R® and the reduction of self-energy will be = thsk:. On the
other hand, a charge will have to occupy a volume & R° too, a'nd
this yields a potential energy ¢2/R. So there will be a compensation
if

he/e? = 1(Rk)*. (8.102)

Is this an indication that a theory involving a shortest lengt.h (or
perhaps a theory involving some “fuzziness” ... ) might autor‘natlca.lly
lead to a definite value for the fine structure constant? Or is what I
have written no more than a roundabout way of saying that fic and
2 have the same dimension?

8.11 Remarks

There is a large literature on Casimir effects, and the subject in all'xts
aspects could easily fill a large book. As noted at the end of the precedmg
chapter, interest in the Casimir force between perfectly conducting pl:ates
has endured over many years (Figure 8.6). In this chapter and the previous
one we have dealt with perhaps the most important aspects of Casimir
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effects. But there are important aspects of the subject that we have not
broached, and in this section we will briefly mention a few of them.

The simple interpretation of the Casimir force between conducting plates
as a consequence of vacuum radiation pressure (Section 3.10) suggests an
approach based on the vacuum electromagnetic stress tensor. Such an ap-
proach to the Casimir force between conducting plates was taken by Brown
and Maclay (1969), who calculated the stress tensor using an image method
for both zero and finite temperatures. Their finite-temperature results agree
with those obtained in Section 8.6.

Barton (1991) has pointed out that the stress tensor appropriate to the
Casimir force between conducting plates does not commute with the Hamil-
tonian of the quantized field and therefore that it is subject to fluctuations.
He calculated mean-square fluctuations, including averages over finite times
and areas appropriate to some measurement apparatus and found them to
be too small to be measured directly.

Shakeshaft and Spruch (1980) have considered radiative level shifts of
an electron bound by its image to a conducting wall, a system they refer
to as murium [see also Barton (1970)]. This system, sometimes called for
obvious reasons a one-dimensional hydrogen atom, can of course be solved
exactly when the vacuum field is ignored, and for an electron bound to a
surface of liquid helium there have been experiments in which Rydberg level
structure has been observed. Shakeshaft and Spruch interpret the rather
large shift (0.2 % for the ground state in the case of an ideal wall®®) in
terms of the electron acquiring, “through vacuum fluctuations, a zero-point
kinetic energy whose magnitude depends on the distance of the electron
from the wall.” The effect may be viewed as a Casimir—Polder interaction
in the limiting case of a free electron, and its calculation is certainly “one
of the simplest calculations in all of quantum electrodynamics” (Spruch,
1986).

Barut and his collaborators have shown how effects attributable to vac-
uum field fluctuations can be derived with a theory in which there are
source fields but no nontrivial vacuum field; in this theory the electromag-
netic field is not quantized?® (Barut and Van Huele, 1985). The theory

25For a realistic model of the wall the order of the effect changes from e? /fic to (¢? [fic)?
(Spruch, 1986).

26 This theory has been criticized on the grounds that an assumed completeness relation
leads in effect to an approximate version of field quantization, and that this version will
not agree with QED to all orders of a loop expansion. See the comment by Bialynidki-
Birula (1986) and the reply by Barut (1986). Grandy (1991) has also criticized the
presumed completeness relation. The fate of Barut’s formalism will most likely be de-
cided ultimately by a comparison of higher order iterations within that formalism to
QED calculations beyond one-loop perturbations.
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has been applied to problems of cavity QED (Barut and Dowling, 1987a),
Casimir—Polder and van der Waals forces (Barut and Dowling, 1987b), non-
relativistic and relativistic calculations of g — 2 (Barut and Dowling, 1988,
1989a,b), and to a derivation of the Unruh-Davies effect via source fields
(Barut and Dowling, 1990).

We indicated in Section 8.7 that the Lifshitz theory has played a ma-
jor role in the study of colloidal and other dielectric systems where van
der Waals forces are dominant. The Lifshitz theory has also been corrobo-
rated in some elegant experiments of Sabisky and Anderson (1973) involving
acoustical interferometric measurements of the thickness of liquid helium
films. The comparison with the Lifshitz theory is excellent, although it in-
volves a somewhat phenomenological expression for the dielectric constant
as a function of frequency.

There is a considerable literature on the application of the Lifshitz the-
ory to the theory of biological membranes (see, for instance, Mitchell, Nin-
ham, and Richmond, 1973). Here again one must resort to phenomenolog-
ical models for e(w).

8.12 Stochastic Electrodynamics

In QED we cannot arbitrarily set to zero the homogeneous, source-free
solution of the Maxwell operator equations in the Heisenberg picture. This
“vacuum” field is necessary for the formal consistency of QED: without it,
it would not be possible to preserve canonical commutation relations and
all they entail (recall, for instance, the discussion in Section 2.6).

These equations are formally the same as the classical Maxwell equa-
tions. Classically, however, we generally assume implicitly that the homo-
geneous solution of the Maxwell equations is that in which the electric and
magnetic fields vanish identically. That is, we assume that there are no
fields in the absence of any sources. In the absence of sources the vacuum
field is simply zero, with no energy or fluctuations whatsoever.

This difference between classical and quantum electrodynamics, together
with the evident importance of the fluctuating vacuum field in QED, sug-
gests the adoption of a different boundary condition in classical electrody-
namics: instead of assuming that the classical field vanishes in the absence
of sources, we can assume that there is a fluctuating classical field with
zero-point energy %hw per mode. As long as this field satisfies the Maxwell
equations there is no a priori inconsistency in this assumption. Whether it
is a better working assumption than the standard, “obvious” one is a matter
to be decided ultimately by comparison with experiment. The appearance
of h in this modification of classical electrodynamics implies no deviation
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from conventional classical ideas, for % is regarded as nothing more than a
number chosen to obtain consistency of the predictions of the theory with
experiment. In this theory h has nothing directly to do with such quantum-
mechanical notions as a fundamental limitation on the precision to which
position and momentum variables can be measured.

This modification of classical electrodynamics to include a zero-point
field of energy %hw per mode is called stochastic electrodynamics. Since
?ts original proposal by Marshall (1963, 1965) it has been of cohsiderable
Interest among a small but active group of researchers.

In stochastic electrodynamics both the field and the particles with which
it interacts are treated classically. Marshall derived the form of the spectral
energy density of the vacuum field in stochastic electrodynamics by requir-
ing the mean-square displacement of a charged harmonic oscillator to be
identical to that given by quantum theory. In this approach the fluctua-
tions in the displacement are caused by the interaction with the fluctuating
vacuum field. Marshall showed that the resulting spectral energy density,

_ hwd
po(w) = 55 (8.103)
is Lorentz—invariant. This is identical to the result (2.73) of quantum the-
ory. Boyer (1969) also demonstrated the Lorentz invariance of the spectral
density (8.103). The proportionality of p,(w) to w?® is in fact required by the
condition of Lorentz invariance, and Boyer takes this as a foundation for
stochastic electrodynamics. Thus one can arrive at the form p,(w) « w3 by
imposing the general requirement of Lorentz invariance, and h then enters
the theory as a multiplicative constant chosen by comparison of theoreti-
cal predictions with experiment. This entry of h into the theory is no less
“fundamental” than the way it is introduced in quantum theory.
In classical Coulomb-gauge electrodynamics the transverse fields may
be obtained from the vector potential satisfying

1. Am

2 _ 1
VA — ?A = —TJ , (8.104)
where J is the current density. The solution of this equation has the form
A(r,t) = Ay(r,t) + A,(r, 1), (8.105)

where A.,(r,t) is the solution of the inhomogeneous wave equation and
A, (r,1) is a solution of the homogeneous equation

1 -
V3A(r,t) - SA=0 (8.106)
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The solution A, (r,t) may be written formally in terms ofa Green function.
The traditional approach is to use the retarded Green function .and to .t.ake
A, to be identically zero. The use of the retarded Green function sz:xtlsﬁes
our intuitive notion of causality, and the choice A, = 0 is reasonable in that
we expect no field when there is no source. But we can choose any (tra:ns-
verse) solution of the homogeneous wave equation for A, and S‘tlll satisfy
the wave equation for the total vector potential (8.105). The choice A, =0
defines “traditional electrodynamics,” whereas the choice of a random field
of zero mean defines stochastic electrodynamics.

In free space we can expand the electric and magnetic fields in transverse

plane waves as

ik-r-wit+oy ) —i(k-r—wkt+0kx)],

E,(r,t) = iZ[CkAek)‘e — C, k€

kx (8.107)

with B, determined from the Maxwell equation —c"1B,(r,t) = VXE,(r,1).
As in Chapter 2 the ey, are unit polarization vectors, with l.t-ek)‘ = 0. The
«randomness” of the field is contained in the phases 0 » which are assumed
to be uniformly and independently distributed over the interval [0,27].
Similar random classical fields were used by Planck, Einstein, and Hopi: to
represent thermal fields [cf. equation (1.49)]. The (classical) expzectatlon
value of the energy density of the random field is (8m)~ Y (EX(r, t)+Ba(r, t))e,
where (...)s denotes an average with respect to the random variables {f}, }-
It follows easily from the form of E,(r,t) and B,(r,) that

1 1 1
(B +BDe = oo Y IOl =3 ogher,  (B108)
" kx kx
so that Thw
Cl? = 5% (8.109)

This result can also be obtained from the requirement that the spectral
energy density of the zero-point field be Lorentz invariant. Then h appears
as a suitably chosen constant in the theory (Boyer, 1975). Thus we can

write

1/2 e :
Eo(r,t) = iz (whwk) [e'(k‘r"‘"‘”’okx) _ e—;(k r “""”kx)]ek)‘

< \"V
A (8.110)

if, without any loss of generality, we take the polarization unit vectors ey,
to be real.
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The factors exp(ify,) and exp(—ify,) in (8.110) replace the photon

annihilation and creation operators ay , (0) and aLA(O) in the corresponding
QED expression for the vacuum electric field in free space. The expectation

values (vac|ay, (0)[vac) = (vaclaLA(O)Ivac) = 0 are replaced in stochastic
electrodynamics (SED) by

(%kr)g = (e ka)p = 0. (8.111)

Similarly the QED expectation value (vac|akx(0)aLA(0)|vac) = 1 corre-
sponds in SED to

(ekre ka)y = 1. (8.112)

However, the expectation value (vac|aLA(0)akA(0)lvac) = 0 has no analog

in SED. This explains the factor (wfiw/V)!/2 in (8.110) as opposed to the
factor (2nhwy/V)1/2 appearing in the QED expression for the electric field.
The 1/4/2 in SED is necessary in order to give the same zero-point energy
%fwk per mode. Another way to say this is that the positive- and negative-
frequency parts of the field in SED contribute symmetrically to the vacuum
field energy density. For this reason calculations in SED are analogous to
QED calculations with a symmetric ordering of photon annihilation and
creation operators (Milonni and Smith, 1975; Boyer, 1975).

If one looks back over the derivation in Section 2.7 of the Casimir force
between conducting plates, it becomes clear that the argument can be
couched in the language of SED rather than QED. That is, all that is
really required in that derivation is the zero-point energy %hwk per mode
of the electromagnetic field. Whether this zero-point energy is of quantum
or classical origin is irrelevant for the purpose of deriving the Casimir force
— SED accounts perfectly well for the Casimir force. It is similarly able
to account for the Casimir—Polder force between an atom and a conducting
wall, the retarded and unretarded van der Waals interactions between two
atoms, and, subject to certain assumptions, the Planck spectrum (Boyer,
1969; Milonni, 1981). Being a purely classical theory of radiation and mat-
ter, SED is unable to derive quantitative expressions for the polarizabilities
appearing in these forces, or for that matter to account for the discrete
energy levels of the interacting atoms.

The Unruh—Davies effect for accelerated detectors is also accounted for
by SED (Boyer, 1984). Indeed the SED derivations of this and other vacuum
phenomena parallel so closely the Heisenberg-picture derivations we have
given in the preceding chapters that there is little point in going through
them here. We refer the reader to the surveys by Milonni (1976) and Boyer
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(1980) and the references therein, as well as to the many more recent papers
in this field. o .

In spite of the successes of SED, it cannot at this time be considered a
serious alternative to QED. For one thing, no classical theory of the electro-
magnetic field can account for such experimentally obse}'ved phenomena as
the photon polarization correlations in a cascade radiative decay of atomic
states, the correlations that have been studied in the context of Bell’s tgheo—
rem (Clauser, 1972; Clauser and Shimony, 1978; Aspect, 1984; Milonni an‘d
Singh, 1991). That is, the strictly classical nature of the electror'na.gne'tlc
field in SED, with or without external fields, rules it out from consideration
as a fundamental theory of the electromagnetic field. In addition, SED runs
into difficulties when one considers the thermal equilibrium properties of
nonlinear dipole oscillators (Boyer, 1980). We refer the reader to the re-
views by Boyer (1980) and de la Pefia and Cetto (1991, de la Pena, 1983),
and the references therein, for a detailed account of SED.

8.13 Concluding Remarks

Maxwell wrote that?”

The facts of electromagnetism are so complicated and various,
that the explanation of any number of them by several different hy-
potheses must be interesting, not only to physicists, but to all who
desire to understand how much evidence the explanation of phenom-
ena leads to the credibility of a theory, or how far we ought to regard
a coincidence in the mathematical expression of two sets of phenom-
ena as an indication that these phenomena are of the same kind.

The “facts of electromagnetism,” after all these years, are as “c.om-
plicated and various” as ever. In the preceding pages we have described
phenomena that are explainable from the hypothesis that the qu.antum the-
ory of electromagnetism is correct in its prediction of a ﬂuctua.tmg vacuum
field. The variety of phenomena that can be explained with this hypothesis
is certainly impressive. Spontaneous radiation, the phenomenon respon-
sible for nearly all the light we see and for bringing energy fro_m the sun
to our planet, is explanable at least in part in terms of fluctuations of the
electromagnetic vacuum field, as are the universal van der Waals forces !:hat
are crucial to our understanding of a wide variety of systems of physwa.l,
chemical, and biological interest. Macroscopic, Casimir-type manifesta-
tions of these forces are interpretable in terms of the effects of boundary
conditions on the vacuum field, as are other cavity QED effects such as

27From Aitchison (1991).
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the environmental modification of spontaneous radiation rates. The “best
theory we have,” quantum electrodynamics, finds its most precise tests in
phenomena such as the Lamb shift and the anomalous magnetic moment
of the electron, where the vacuum field fluctuations are the basis of beauti-
ful heuristic interpretations. These fluctuations appear to be “promotable”
to the level of thermal fluctuations when our detectors are accelerated, an
effect too small to be measured in the laboratory but important to our
understanding of quantum field theory and general relativity. And then
there are “applications” of vacuum field fluctuations to the fundamental
linewidths and coherence lengths of semiconductor lasers of interest for op-
tical communications. It is up to the reader to decide to what extent the
explanation of these diverse phenomena lends “credibility” to the concept
of the vacuum field.

These effects attributable to vacuum electromagnetic fluctuations, how-
ever, can be explained by “several different hypotheses.” We have noted
repeatedly, particularly in Chapters 4 and 7, that the vacuum fluctuation
effects we have described can be explained, equally well in most cases, in
terms of sources fields, or in terms of some combination of source and vac-
uum fields. In other words, for many purposes we can choose to think in
terms of either the fluctuation or the dissipation aspect of the interaction of
charged particles with the electromagnetic field. And both the vacuum and
source fields are absolutely essential for the formal consistency of quantum
electrodynamics.

At the opposite extreme one can take a stand “against interpretation,”
and argue that none of these effects require us to think in terms of vacuum
fields, or source fields, and that for the purpose of calculations all we need to
know about is the Schrodinger equation and the other tenets of quantum
theory. Such an approach, though perfectly rational, appears to me to
be not only uninteresting, but also contrary to the way physics has for
the most part developed - intuitively and with physical images rather than
deductively from the formalisms, when they exist, that happen at any given
time to be fashionable. Moreover, most physicists would agree on the value
of a single concept that provides intuitive explanations for the “complicated
and various facts of electromagnetism.” We shall soon see that the concept
of the quantum vacuum is just as valuable when we broaden our perspective
to include relativistic effects.

In Chapter 10 we discuss the Casimir effect for the quantized Dirac
field, which is of interest in connection with the “MIT bag model.” However,
there are many examples and implications of Casimir effects that we cannot
nddress in any sort of detail in this book.?® An important implication

#*Other aspects of Casimir effects are reviewed by Mostepanenko and Trunov (1988).
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arises in cosmology, in connection with the cosmological constant prob!erp.
The reality of zero-point energies suggested by the existence of‘Casun.lr
forces evidently means that zero-point energies should be taken ser10u§ly in
general relativity. When this is done the total zero-point energy density of
the vacuum acts in effect as a cosmological constant of the type introduced
by Einstein in order to have static solutions of his field equations. However,
astronomical data indicate that any such cosmological constant must be
many orders of magnitude smaller than predicted by quantum field theory
(Weinberg, 1989). This difficulty remains unresolved.
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Chapter 9

The Dirac Equation

Previously, people have thought of the vacuum as a region of
space that is completely empty, a region of space that does not con-
tain anything at all. Now we must adopt a new picture. We may
say that the vacuum is a region of space where we have the lowest
possible energy. Now, to get the lowest energy we must fill up all the
states of negative energy ... Thus we must set up a new picture of
the vacuum in which all the negative energy states are occupied and
all the positive energy states are unoccupied.

— P. A. M. Dirac (1978)

9.1 Introduction

The Schrodinger equation and the Heisenberg equations of motion as used
in the preceding chapters are nonrelativistic. When quantum theory is for-
mulated relativistically, there appear phenomena such as pair creation and
vacuum polarization that could not be anticipated in purely nonrelativistic
theory. Such phenomena force a revision of the concept of the vacuum con-
sidered thus far, where vacuum fluctuations have been associated primarily
with the electromagnetic field. In this chapter we describe some of these
relativistic phenomena.

The principle of relativity was stated by Isaac Newton as follows: “The
motions of bodies included in a given space are the same among themselves
whether that space is at rest or moves uniformly forward in a straight line”
(Feynman, Leighton, and Sands, 1964). Thus no experiment performed
iside a closed spaceship in uniform motion can be used to infer its veloc-
ity. All physical phenomena appear exactly the same as when the vehicle
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is at rest; there is nothing special about zero velocity.! .Newf;on’s .laws
of motion satisfy the principle of relativity under the “obvious, Galilean
transformation

d=z—ot, y=y, 7=z t'=t (9.1)

However, Maxwell’s equations change form under this. transfo'rma.tion of
coordinates, such that the velocity of light would be dlﬂ'e}'ent in different
reference frames. Einstein postulated that Maxwell’s equations should hz%ve
the same form in all coordinate systems, and in particular that the .veloc1ty
of light ¢ is the same in all systems. The coordinate transformfltlon that
leaves the Maxwell equations invariant in form, and undeL: whlch.a{l thg
laws of physics are invariant according to the theory of special relativity, 1s
the Lorentz transformation:

(9.2)

We will for the most part follow the convention of relativistic qu‘a.ntum
theory and use “natural” units in which h =c= 1.‘ In these units the
Compton wavelength of a particle of mass m is 1 /m, i.e., mass b_elcsomes a
unit of inverse length. A mass corresponding to 1 fm (1 fm = 10 m = 1
femtometer = 1 fermi) corresponds to an energy of about 200 MeV, i.e., 1
fm = 5 (GeV)™. . . .

Not very much about the theory of relativity will be 1"equ1red for our
purposes, but it may be useful to briefly review somle n;)taglon. Space—tlme
coordinates (t,z,y,2z) = (¢,x) are denoted (z°,z 85, % ),.or simply by
the contravariant component symbol z*. This applies to all 'four-vect'ors,
such as the energy-momentum p* = (E ,p). The corresponding covariant
components are £, = gup &’ = (t,—x) and py = gup’ = (E,—p), where
the metric tensor?

1 0 0 0
0o -1 0 0 9.3
=19 0 -1 0 |~ (0.3)
o 0 0 -1

1]deas bearing on the principle of relativity go back at least as far as Gal_lleo, who
posed the question of whether someone sleeping on an anc}‘lofed bt.)at, and' waking ll:o .s:‘:e
only a clear sky, could discern that the boat had begun drifting with a uniform velocity.
I am indebted to Professor Nandor Balazs for this remark.

2This choice of metric is widespread but not universal .The reader who does not
recall the general distinction between covariant and cor.ltra?'anz.mt cEOfnponen‘ts of a vecxt‘;)r
should understand that for our purposes here the distinction is f,nvm! tmd involves o aly
different signs. The origin of the sign differences is simply the minus sign in the quantity
22 — c2t2 left invariant by the Lorentz transformation of coordinates.
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Scalar products of four-vectors A* and B* are denoted by A-B = A¥B, =

A,B* = g,,A*B" = A°B° — A - B. The gradient V# = §* = 9/9z, =
g*v8/0z* = (8/9t, —V), so that the four-vector momentum operator in the
coordinate representation is p# = i9/0zx, = i(0/0t,—V). The divergence
of a four-vector A* is thus

0A, _ ,, QAT _ L0A" 9A* _ A

B“A,,zg“"%,—_g Iun Ggv =0 dz¥ _ 0zv ot +V-A. (94)

9.2 The Dirac Equation

The theory of “relativity” is really a theory of invariance: the fundamen-
tal equations of physics must be Lorentz covariant, i.e., they must have
the same form when Lorentz transformations are applied to the space—time
variables. The first attempts to derive a relativistic quantum-mechanical
wave equation were made by Gordon, Klein, and Schrédinger in 1926-27.
For a free particle of rest mass m, the replacement p — —iV in the relativis-
tic energy—momentum relation E? = p? + m?, together with the “squared”
Schrodinger equation H2y = —824/8t2, produces the Klein-Gordon equa-
tion
o 2 2

(ﬁ -V ) P(x,t) + m*y(x,t) = 0. (9.5)

The Klein—-Gordon equation is in fact a valid Lorentz-covariant wave equa-
tion for spinless particles. However, until 1934 it was considered unaccept-
able for two reasons. One reason is that it allows negative-energy solutions.
For instance, the plane wave ¢¥(x,t) = Ae~"Et=KX) is a solution of (9.5)
with E2 =k 4+ m?or E = :i:\/é2 + m?; the negative-energy solutions can-
not be simply discarded — as they can be in classical (relativistic) mechan-
ics — because they are required for the completeness of the eigensolutioné
of the Klein—-Gordon equation. With negative energies, the energy spec-
trum is not bounded from below, and therefore it is possible in principle
to extract energy indefinitely by applying some perturbation that induces
downward transitions.

The other reason for the original dissatisfaction with the Klein-Gordon
equation has to do with the definition of a probability current. These
difficulties were actually a consequence of the attempt to formulate a single-
particle theory. The field ¥(x,t) should itself be quantized, and when this
is done the negative-energy solutions are associated in a natural way with
antiparticles. That is, quantum field theory and Lorentz covariance require
negative energies and the existence of antiparticles. We shall return to these
points in Chapter 10.
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Historically, of course, things evolved first with attempts to formulate
“better” single-particle relativistic wave equations. Since the negative-
energy solutions of the Klein—-Gordon equation are a consequence of having
a second derivative with respect to time, Dirac (1928) sought an equation
having only a first time derivative. The requirement of Lorentz covariance
suggests that such an equation should also have only first derivatives with
respect to the spatial coordinates, so that the desired wave equation would
have the form '

i((-%+a-v)¢=ﬁm¢. (9.6)

We also want to satisfy the relativistic energy—momentum relation E? =
p? + m? with E — i0/8t and p — —iV. Equation (9.6) implies

— = = (—ia -V + fm)y. (9.7

Then E? = p2+m? will hold, i.e., ¥ will satisfy the Klein—-Gordon equation,
if
ﬂ2 =1, aiff + Bo; E{ag,ﬂ}=0, {a.-,aj} =26,'j . (9.8)

Thus (9.6) will not be consistent with the relativistic energy—-momentum
relation unless 8 and the a; are matrices and ¥ is therefore a column vector.

Equations (9.8) imply that o? = 1 and therefore that o; and have
eigenvalues +1. Furthermore, from the cyclic property of the trace of a
matrix, and the anticommutation relations (9.8), we have

tr@ = trBa? = tro;fo; = —tra?f = —trf =0. (9.9)

Likewise tra; = 0. Since the a; and § are traceless and have eigenvalues
+1, they must be even-dimensional matrices. Dimension 2 is too small
because it is only possible to construct three anticommuting 2 X 2 matrices,
which may be taken to be the Pauli spin matrices 01,02, and o3 defined
conventionally as

as(3) w(23) a3 8) oo

The algebra (9.8) can be satisfied with 4 x 4 matrices. For instance, this
can be done with the Dirac representation:

"‘=(<(r).- T)i)’ ﬂ=<(1) —01)’ (9-11)
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wbere all .the entries in these matrices are of course themselves 2 x 2 ma-
trices. It is conventional to work instead with the matrices®

=8, 7' =pai, (9.12)
which satisfy
{r", 7"} = 29" (9.13)
and (7')1 = —7',(:7‘)2 = —'1,(70)]t = 7°,(y°)* = 1. In terms of the ¥
matrices we can write the Dirac equation (9.6) for a free particle as

.0 , d i
1(,3'6—t+,30'v>¢‘=1(‘70@+7'aﬁz;)¢:ﬁzm¢ (9.14)

or

1'7“—6- —m)y=0.
( OzH ) (9.15)

In Feynman’s slash i = = i i
P }:Aa/az# swas notatfn, lvlvher'e A= gw-.y#Av =yFA, and.ln particular
0% , we can write the Dirac equation for a free particle as

(i — m)y = 0, (9.16)

(#—m)p =0. (9.17)

Taking the Hermitian conjugate of both sides of (9.6), using the fact
that & and 8 are Hermitian and defining

PRl (9.18)

we obtain the conjugate form of the Dirac equation:

Wi P +m) =0, (9.19)

where the arrow over @ reminds us that the derivative acts to the left. Now
we can define a conserved current in the same fashion as for the nonrela-

tivistic Schroédinger equation. Multiply (9.16) on the left by ¥
the right by #, and add: (8.16) eft by ¢, (9.19) on

o oY a
_ B2 = DB ) =
32r TV Gan ¥ = g (P79 =0. (9.20)

V'This representation for the i j

1 ~ matrices follows Bjorken and Drell (1964) and oth

texthooks, but d.nﬂ'ers from that used in Dirac’'s original paper and in( Sakl)lrai (1;76;1‘
-lw;e :.he ¥ r;x:;l.nc}e‘s are all Hermitian. This difference is inconsequential, as the physicai
predictions of the theory are independent of the choi i i
o eped ol o e choice of representation for the 4 matrices

py*
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Thus the conserved current density, in a representation such as the “stan-
dard” one (9.11) in which 3 and a are Hermitian, is

i =Py = (W, vlay), (9.21)

i.e., the density p is 1/)11/), the current density j = ¢Tm/), and 9p/At+V -j =
0.

It is worth noting that any set of 4 x 4 matrices satisfying {vy#,7"} =
2g#¥, with +°t =49 and 4t = —4f, i = 1,2,3, may be used in writing
the Dirac equation. In particular, if {y*' 7'} = {v*,7*} = 29", then
the y# and y*' matrices are equivalent up to a unitary transformation:
y# = §~1y#'S2 It then follows that ¢/ = S satisfies the Dirac equation
with the y# replaced by ¥#’. Since S is unitary, this leads easily to the
conclusion that the physical predictions of the theory are independent of
the specific representation chosen for the gamma matrices.

This representation independence may be used to prove the Lorentz co-
variance of the Dirac equation. For this purpose, suppose for the moment
that 4# transforms as a four-vector under Lorentz transformations. Then
since 8/0z* is a four-vector, y*9/0z" is a scalar under Lorentz transfor-
mations. But the supposition that ¥* transforms as a four-vector amounts
only to different choices of representation in different frames, and so the
Dirac equation in the transformed frame will be satisfied by a wave func-
tion ¢/ = Sv, where the unitary matrix S is determined by the Lorentz
transformation relating the two frames. The fact that y#8/0z* may be
assumed in effect to be a scalar under Lorentz transformations then leads
easily to the proof of covariance of the Dirac equation. Details may be
found in standard textbooks.®

Plane Waves

Let us review briefly the plane-wave solutions of the free-particle Dirac
equation, since these appear when the Dirac field is quantized. The fact
that we used E? = p? + m? in the derivation of the Dirac equation implies
that there will be negative-energy as well as positive-energy solutions. We
denote these by ¥_ and v, respectively, and write

vy = e BePXy(p) =P u(p), (9-22)
p. = &FlemPXy(p) =7 u(p), (9-23)

4This is what Pauli called the fundamental theorem of the gamma matrices. See R.
H. Good, Jr., Rev. Mod. Phys. 27, 187 (1955).
5See, for instance, Bjorken and Drell (1964).
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where u and v are 4-dimensional column vectors (“spinors” i
' . Th
equation (9.16) for ¥, and ¥_ implies (‘epinors”) " Dirae
(# —m)u(p) =0, (¥+ m)v(p) =0. (9-24)
Consider first a particle at rest, with p = 0 and therefore p° = E =m
Then p = y#p,, = Y°po = fm and (9.24) becomes .
(B-Du(0)=0, (B+1)v(0)=0. (9.25)

Each of these equations has two linearly independent solutions:

/(1)\ (0

ul(0) = E u?(0) = (1) , (9.26)
\ o) \ o)
(Y (o

2= ]| 2o={q] (9.27)
\ 0 \ 1/

ﬁlere, u!(0) and u%(0) describe a positive-energy particle with spin “up” and
dOWI.l,” respectively, along the z axis, whereas v!(0) and v%(0) describe a
negatlve-enfergy particle with spin up and down, respectively (Section 9.7)
To gbtam plane-wave solutions with p # 0, we note that (§ — m)(}f +
m) = p —m? = 0, so that u*(p) = (p+m)u’(0) and v’ (p) = (—p+m)v*(0)
satisfy (9.24). Explicitly, solutions of (9.24) are

1 0
1 _ 2 _ A 1
u (p) E + m pz ’ u (p) - E + m p_ ) (928)
P+ i
and
D: D-
1 = A P+ 2 A Pz
v (p) Trml 1 | Y (p) = T (I; , (9-29)
0 1

where E = /p? 4+ m2?, A is a normalization factor, and py = p, +ip,. The

choice |A| = /(E + m)/2m gives

@ (p)v’ (p) = -7 (p)¥' (p) = &; . (9.30)
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Since ¥ is a scalar under Lorentz transformations, this normalization is
Lorentz invariant. Note also that

W) () = ¥ @) () = 2855 (9.31)

Here, ¢1¢ transforms as the time component of a four-vector, as i{ldicat;‘ed
by (9.21) and the factor E/m in (9.31). The Lorentz c?ntractl?n o. a
volume element is thus compensated by the dilation of 1/)11# in the dlrectlon
of motion, so that | d3zyt is a scalar invariant. . .

Finally we list the following additional spinor properties that will be
useful in Chapter 10:

() (p) = 0, (9.32)
suemne = (52 (939)

sheme = (Hr) N (9.34)

9.3 Hole Theory: The Dirac Sea

One of the perceived difficulties with the Klein-Gordon eql.lat.ion. before
1934 was that the time component of its conserve<‘i current. j#, which was
associated with a probability density, is not positive—definite. The ccfrre-
sponding probability density 1/)11,/) for the Dirac eq}latior.l, by co.ntrast, is of
course positive—definite. However, the Dirac equatlor'x still ad.mlt.s negatlvl(;—
energy solutions, as we have reviewed in the pFeced:ng se<.:,t1(.)n. It is well-
_known that Dirac turned this “vice” into a “virtue by his interpretation
of the negative-energy states in terms of holes. ' ‘

As noted in connection with the Klein-Gordon equation, negative-energy
solutions are required for completeness. In problem§ such as the Co'mptor}
scattering of light by electrons, furthermore, negatlve-ene.rgy §ol|:1t10ns o
the Dirac equation are necessary in order to obta.lp the Klein—Nishina cross
section, which has been accurately tested expenmentally.. On the other
hand, the existence of negative-energy states Yvould seem t? imply that mat-
ter is unstable against transitions from positive- to negatwe—ene‘rgy states,
as also noted in connection with the Klein-Gordon equation. Dirac (1930)
resolved these difficulties by supposing that all the m_agatwe-energy states
are filled, so that transitions from positive- to negative-energy states are
forbidden by the Pauli exclusion principle for electrons.
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E
A

Figure 9.1: Energy spectrum associated with the Dirac equation. Energies
between —mc? and mc? are forbidden.

The set of occupied negative-energy states is called the Dirac sea. With
the Dirac hole concept, the vacuum became more complicated, now consist-
ing of zero-point electromagnetic fields as well as a sea of negative-energy
electron states. We shall see in the following chapter that the idea of the
Dirac sea is modified by quantum field theory, but the concept still provides
a very useful intuitive guide that warrants further discussion here.

Figure 9.1 illustrates the energy spectrum of the Dirac equation (and
also the Klein-Gordon equation). For the free-particle Dirac equation we
have £ = +./p? + m?, so that energies between —mc? and +me? are
forbidden. The energy interval (—mc?, mc?) is analogous to the energy gap
between valence and conduction bands in a solid. In the case of a solid, a
filled valence band means there will be no current when an external field
is applied: as a consequence of the Pauli exclusion principle, the electrons
cannot change their states unless they absorb enough energy from the field
to be promoted into the conduction band. In particular, a filled valence
band at low temperatures means that the solid will be an insulator. If an
electron in the valence band is somehow excited into the conduction band,
however, it leaves a hole in the valence band. If the material is connected
to the terminals of a battery, there will be a flow of current associated with
the motion of electrons in the conduction band. However, electrons in the
valence band are also affected by the potential difference, and can fall into
the holes left behind by the electrons that have been promoted into the
conduction band. In so doing, the electrons in the valence band drift in the
same direction as the electrons in the conduction band and also contribute
to the current. We can view this situation as one in which electrons in the
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conduction band move in one direction while the (positively charged) holes
in the valence band move in the opposite direction.

Such a hole picture was devised by Peierls in 1929 to explain the Hall
effect in many metals, where the charge carriers appear to be positively
charged. Dirac (1930) independently argued analogously that the absence
of a particle in the negative-energy sea corresponds to the presence of a
positive-energy, oppositely charged particle.® As is well-known, he origi-
nally thought that the positively charged states associated with a hole in
the negative-energy sea might correspond to protons, but difficulties asso-
ciated with this interpretation led him to propose later that “A hole, if
there were one, would be a new kind of particle, unkown to experimental
physics, having the same mass and opposite charge of the electron” (Dirac,
1931). The existence of these hole particles was confirmed with Anderson’s
discovery of the antielectron et or positron, in 1932.7

We noted in Chapter 3 that, in his theory of spontaneous emission based
on the quantized radiation field, Dirac in 1927 showed that quantum the-
ory could deal with the creation of particles. In that theory the particles
(photons) that can be created or annihilated are massless. With the con-
struction of his relativistic wave equation and the hole theory, Dirac in
1930 took the first step in showing that quantum theory could deal with
the creation or annihilation of particles of finite mass. For instance, the
absorption of a photon of energy exceeding 2mc? can promote a negative-
energy state across the energy gap 9mec? and produce an electron—positron
pair. Quantum field theory deals more generally with the creation and an-
nihilation of particles in much the same way as QED deals with the creation
and annihilation of photons (Chapter 10).

The theory of the Dirac equation that we have been recalling here is a
single-particle theory in that 1 is not quantized and there are no annihila-
tion and creation operators for particles in the formalism. The shortcomings
of such a single-particle theory are already implicit in the need to resort
to the hole theory in order to escape from difficulties with negative-energy
states. Nevertheless, hole theory provides a very useful intuitive picture for
various relativistic phenomena, and we shall now consider a few examples.

6 For historical analyses of Dirac’s hole theory see, for instance, Bromberg (1976) or
Moyer (1981).

7The existence of the positron was inferred from tracks observed in a cloud chamber
exposed to cosmic rays. Evidence for the creation of electron-positron pairs was observed
in 1933 by Blackett and Occhialini. The antiproton was discovered by Chamberlain,
Segré, Wiegand, and Ypsilantis in 1955.
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Figur‘e 9:2: Energy diagram for an electron in a square well subject to a uniform
electric field E,; z = 0 defines the surface of the metal. An electron of energy
E can tunnel across the triangular potential barrier.

9.4 Pair Creation in a Uniform Electric Field

The analogy between the Dirac hole theory and the energy band theory
of sol‘ids allows a simple approximate treatment of electron—positron pair
creation in a uniform electric field. (Itzykson and Zuber, 1980; Aitchison
1985) We consider first a simple model of field emission of electrons from a
metal, where each electron is assumed to be confined by a one-dimensional
square well potential. The application of an electric field E, adds a potential
energy V(z) = —eFE,z, where z is the coordinate normal to the surface of the
metz?,l. An electron of energy F can tunnel through this triangular potential
barrier (Figure 9.2), and the tunneling probability is given approximately

by (Schiff, 1968)
=2 "B dzr/2m[V(2)- 3
P =), " 4=V amlVE)-EIR? (9.35)

where zg is the classical turning point such that V(zg) = E. For the
problem of field emission we let V(2) = —eE,z and E = —W, where W is
the work function of the metal. In this case zg = W/eF, = a and

- N m —eE,z -
P =2, #VamW—eE.)/W _ 4 l_—sz/hza’ (9.36)

which is known as the Fowler-Nordheim formula for field emission.
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Now in the case of a uniform electric field of strength E, in the vacuum,
we might expect intuitively that (9.36) should be applicable to ete™ pair
production if we let W = 2mc? and a = 2mc?/eE,:

Ppair - e—lSm’c”/:&heE, = e-—lec’/Se)‘ch (937)
where A, = h/mc is 1/27 times the Compton wavelength of the electron.
The exact calculation for the probability w per unit volume per unit time
for pair creation, which was first done by Schwinger (1951), gives

22 2 3
_ € E; ie.—mrmzc /heE, , (938)

so that the simple calculation based on tunneling and hole theory gives
roughly the same exponential dependence on mc? /el E,.

Note that mc?/eX. = 10'® V/m. For a monochromatic plane wave with
this field strength, this corresponds to an intensity ~ 103° W/cm?. Such
enormous electric field strengths are required for pair production that it
has never been directly observed. The effect is exceedingly small even for
the electric field (~ 5 x 10*! V/m) binding the electron in the hydrogen
atom. In this case E, = e2/r, with r = h?/me? = hifamc = A./« for the
first Bohr orbit. Then mc?/eA.E, = a~3 and Ppair ~ =0 = -137 Ip
the field of a nucleus of charge Ze, however, Ppair ~ e'l/za"a, and pair
creation might be observable near a nucleus of charge Z ~ a~1=137. No
such stable nuclei are believed to be possible, but a transient nuclear state
of this type might occur in the collision of two stable nuclei of large Z. In
this case there is the possibility of a “breakdown” of the Dirac vacuum,
with the creation of positrons of well-defined energy (Fulcher, Rafelski, and
Klein, 1979; Greiner, Miiller, and Rafelski, 1985).

9.5 Vacuum Polarization

Hole theory suggests that a positive-energy electron should electrostatically
repel the negative-energy electrons in the Dirac sea, thus in effect polarizing
the vacuum in its vicinity. This results in an effective electron charge that
is smaller in magnitude than e, i.e., the “bare charge” of the electron is
partially screened. This screening is a consequence of virtual pair produc-
tion in the Coulomb field of the charge, such that the positron tends to be
attracted to the electron, while the electron of the virtual pair tends to be
repelled. Likewise a positively charged nucleus will have an effective charge
smaller than its bare charge. Evidently observed charges of all particles are
effective charges determined in part by vacuum polarization.
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From the energy-time uncertainty relation we know that virtual pairs
of particles of mass m can exist for times At ~ A/mc?, during which time
they can separate by a distance ~ cAt = h/mc = A.. Thus at distances
smaller than A from a charged particle we expect to “see” the bare charge,
whereas at larger distances we can see only the usual observed charge of
smaller magnitude.

The effect of vacuum polarization, and in particular the difference be-
tween bare charge and effective charge, can be observed indirectly as a
contribution to the Lamb shift. At distances close to the nucleus, accord-
ing to the above argument, the electron in a hydrogen atom should feel a
stronger Coulomb attraction than that due to the usual observed charge.
Since s state electrons are most likely to be found near the nucleus, this
effect should be largest for the s states. As we shall see in Chapter 11, the
2p1/2 — 2512 splitting in hydrogen due to vacuum polarization is about 27
MHz. This is only about 1/40 of the total Lamb shift, but it is essential
in the comparison of theory with experiment. In other systems, such as

muonic atoms, vacuum polarization can be the dominant contribution to
the Lamb shift.

9.6 The Klein Paradox

C_Jonsider a one-dimensional model of electron scattering by a potential bar-
rier Vo‘ > 0 (Figure 9.3). We represent the incident electron of energy E by
the spin-up wave function ¥inc = eP*u'(p)e~*F! = ¢in.(p)e *F*, where

1

inz 0
Finc(p) = ae’? = | 7= E? —m? (9.39)

0

'The wave function in region I is the sum of ¢i,.(p) and a reflected wave of
the form (9.39) with p — —p:

#1(p) = ae'?* +bem?

| (9.40)

O:?GOH
3

t

+

3
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Figure 9.3: An electron of energy E incident on a potential barrier of height
Vo-

The transmitted wave in region II has the form of a free-particle pla;1e wa:es,
but with E replaced by E — V, and p replaced by p’ = V(E = Vo)2 — m?:

1
" 0 9.41
¢r1(p) = de'?”? p’ : (9-41)
E-V,+m
Continuity of ¥ at z = 0 implies that
at+b=d (9.42)

and p(a — b)/(E +m) = p'd/(E -V, +m), or

_p_FE+m (9.43)
a—b= P E_V,+m .
Thus
b_1-r (9.44)
a 147
and
d__2 (9.45)
a 147’

8 There is no need to consider spin—down components in tl‘le t'ransmitted and reﬂect:ed
waves: including them and imposing the condition of contn.muty of the wave funct.u.n
across the boundary at z = 0, one easily deduces that t.h.elr amplitudes must vanish.
Thus there is no spin flipping in the scattering process of Figure 9.3.
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where
P E4+m

pE-V,+m’

The forms (9.44) and (9.45) are familiar from nonrelativistic theory.

If |E~V,| < m, p' is imaginary and the solution (9.41) in region II
is exponentially damped. If V, > E + m, however, p’ is real and so the
wave function in region II is oscillatory, indicating that there can be a
penetration of the barrier if it is large enough. In the latter case, according
to a common interpretation within the single-particle framework (Bjorken
and Drell, 1964), r is real and negative. The incident, transmitted, and
reflected current densities j3 = j = 1/)ta3¢ calculated for these solutions
satisfy

r=

(9.46)

Jtrans _ ar Jref _ (1 - "')2
jinc - (1+7')2 ’ jinc - (1+7')2 ’
and therefore the transmitted current is negative and the reflected current
is greater than the incident current. These peculiar results for V, > E +m
are referred to as Klein’s paradoz.
To understand the origin of the “paradox,” note that for |E —V,| < m
the wave function in region II is exponentially damped over a distance

(9.47)

1
N R R AL

so that an increase in V, toward E tends to tighten the localization of
the wave function in region II. For V, ~ E,Az ~ h/mc, and the spread
in momentum associated with this coordinate localization corresponds to
energies large enough for pair creation to be possible. In other words,
the single-particle interpretation breaks down, and can lead to apparently
paradoxical conclusions, when the potential barrier is so large that particle-
antiparticle pairs can be produced. The breakdown of the single-particle
interpretation in this regime is the source of the Klein paradox.

We can arrive at a better physical understanding of these results from
the perspective of hole theory (Greiner et al., 1985). The potential in region
I1 raises the positive- and negative-energy continua by V,, as indicated in
Figure 9.4, and therefore there is an overlap of the positive-energy contin-
uum in region I with the lower-energy continuum of region II. This allows an
electron incident from region I to eject electrons from the occupied lower-
energy continuum states in region II. The ejected electrons move to the left
in the positive-energy continuum of region I, as shown in Figure 9.4, while
the holes (positrons) in region II move to the right. This explains why the
reflection coefficient can exceed unity. It also explains why the electron

Az~ H ~ , (9.48)
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Figure 9.4: Allowed energy continua in the regions | and Il of Figure 9.3. An
incident on the barrier from region | can cause more electrons to

t e .
electron et to appear in region Ilif Vo > E+m. After

appear in region | and positrons
Greiner et al., 1985.

probability current in region II can be negative: a positr'on current in the
positive z direction is equivalent to an electron current in the negative z

direction.

9.7 Spin and the Nonrelativistic Limit
The Dirac equation (9.6) has the Hamiltonian form
i%‘té=—ia-V¢+ﬂm1/)=(a-p+ﬂm)d)EH1/}. (9.49)

To obtain a Dirac equation for an electron coupled t’f’ a prescribed, external
electromagnetic field with vector and scalar potentials A and0<I>, we make
the usual substitution p# — p# — eA¥ ie.,p — p- eA and p® = i8/0t —
i0/0t — e® (see Chapters 4 and 12). Then (9.49) is replaced by

i%% =[a-(p—eA) +e® + m]yY (9.50)
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for an electron in an externally applied field. This identifies the Hamiltonian
as

H=a - (p—cA)+eP+Pfm=a -p+pm+ Hint , (9.51)

where HiNT = —ea - A + e®. Comparison with the classical interaction
—ev - A +e® suggests the interpreiation of a as the operator corresponding
to the particle’s velocity, i.e., @ = v/c. This interpretation is strengthened
by the Heisenberg equations of motion that follow straightforwardly from
the Hamiltonian (9.51) and the canonical commutation relations:

(-{lﬁ) [r,H = a, (9.52)

r =

. 1

T = |z [x, H] = ¢(E + a x B), (9.53)
where # = p — €A is the “kinetic momentum,” p being the canonical

momentum conjugate to r. The interpretation of & as a velocity operator,
however, is ambiguous, since a? = 1 would imply that v; has eigenvalues
dec. We shall return to this point later.

Let us review briefly the nonrelativistic limit of the Dirac equation

(9.50). Write
Y= ( ¢ ) ) (9.54)
X

where ¢ and X are each two-component column vectors, so that

i%(;):a-r(z)+e¢(§)+m(_¢§). (9.55)

In the nonrelativistic limit the energy mc? is large compared with any
kinetic or potential energy, and this suggests writing

( % ) = et < z ) (9.56)

and assuming that ¢ and x are slowly varying compared with e=*™! in a
nonrelativistic approximation. Equation (9.55) becomes

&(8)re() () (D). om
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and in the nonrelativistic limit the second of the two indicated equations is
replaced by

~77 9.58)
X=o—¢. (
Then the equation for ¢ becomes
2
;2% = [(—"—'l— + e<I>] . (9.59)
ot 2m

This result can be cast in a more familiar form by using the general
identity

(d-C)(d’-D) = U.'o'jC,'Dj = (6,‘j+idk€,'jk)Cng = C~D+i0‘-(CXD), (9.60)

where the ¢;;; are the components of the Levi-Civita pseudotensor. Thus®

(0% = x-7w+ioc-(7x7)

= (p—eA)’ +io-[(p—cA) x (p—eA)]
(p—eA) —ico-[px A+ A xp]
= (p—eA)’-eo B, (9.61)

and we can write (9.59) as the nonrelativistic, two-component Pauli equa-
tion,

., 0¢ 1 € .., ¢€h ] 9.69
— = |—(p—-A)" - c-B+ed| s (9.62)
ih ot [Qm P ) 2me
For a uniform magnetic field B, with A = -;-B x r, this reduces to
., 0¢ p? e ] 63
L |l —(L+2S)-B—¢®| ¢ (9.63)
i at [2m 2mc( +128)

if we retain only first-order terms in B. Here L = rxp is the orbital angular
momentum and S = (h/2)o is the intrinsic (spin). angular momentum.
Thus the gyromagnetic ratio of 2 emerges “automatically” from the Dirac
equation for an electron in an external field.' . o
By considering the Dirac equation for a free particle or a particle in a
central force field, one easily verifies that {H,J] = 0, where J = L + AX/2

™ E= ( - ) . (9.64)

2We use the fact that the p operatorin p X A acts on the product f’f A and a scalar
function f, and p X (Af) = —iV x (Af)=—ifVY x A+iAxVf=-ifB- Axpf, s
that p X A = —iB - A X p.

10Recall the discussion in Section 3.13.
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Thus the total conserved angular momentum consists of an orbital part and
a spin. This is perhaps the simplest way to deduce that X¥./2 corresponds
to a non-orbital, spin angular momentum.

For an electron at rest, the spinors u'(0) and v(0) given in equations
(9.26) and (9.27) are eigenvectors of £3 with eigenvalues +1; for this reason
they are said to have spin “up.” Also, 4?(0) and v2(0) are eigenvectors of
Y3 with eigenvalues —1, i.e., they have spin “down.”

For p # 0, the spinors u*(p) and v"%(p) given by (9.28) and (9.29)
are not eigenvectors of £3. However, they are eigenvectors of the helicity
operator £ - = - p/|p|. It is easy to see, in particular, that if we choose
axes such that p; = p, = 0, then u!(p) and v!(p) are helicity eigenstates
with helicity eigenvalues +1, and u%(p) and v?(p) are helicity eigenstates
of helicity —1. (Note that in nonrelativistic theory, by contrast, any two-
component Pauli spinor that is independent of x and ¢ is an eigenstate of
o - i, with 71 a unit vector in “some” arbitrary direction.)

The natural way in which spin emerges from the Dirac theory suggests
that it is a relativistic effect. However, we can introduce spin nonrelativis-
tically by writing p? equivalently as (¢ -p)? in the Schrédinger equation for
a free particle, and then making the replacement p — p — eA /c for electro-
magnetic coupling. This approach to the derivation of the Pauli equation
is less natural than that proceeding from the Dirac equation, but neverthe-
less provides a logical basis for the introduction of spin in nonrelativistic
theory.!1

It is not difficult to derive relativistic corrections to the Pauli Hamil-
tonian appearing in (9.62). Retention of the lowest-order corrections gives
(Itzykson and Zuber, 1980)

o 1 €ay2 eh 1 € 4
H = 2m(P cA) 2mca‘-B+ed§—8m362(p_cA)
eh? eh? _,
tgmra? VEX Pt g5 Vie. (9.65)

‘The first correction is easily understood from the expansion

204 —Eayz21/2 2 1 € . \2 € . .4
A = +—(p——-A
[mc® + (p P )7c’] mc 2m (p - ) (p cA) +

(9.66)

8m3c2?

'1This approach is often attributed to Feynman, but I have been unable to recall or
find where Feynman might have published it. It is also employed by A. Galindo and C.
Sanchez del Rio, Am. J. Phys. 29, 582 (1961). I am indebted to Professor Luis de la
e for bringing this reference to my attentian.
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The second correction is the usual spin—orbit coupling for ® = &(r):

eh? eh? 1do eh? 1do

4m2c2a Ve xp= 4m2026 ' ;—7;1' Xp= am?ct r dr

o L. (9.67)

The last, so-called Darwin term in (9.65) may be understood, analogously
to (3.40), as the correction

e®(r + Ar) — ed(r) = %(Ar)2V2<I> , (9.68)

with )
2=l —) ==A2. 9.69
(Ar)" = 4 (mc) 47° ( )

Evidently this correction is attributable to fluctuations of the electron’s po-
sition on a scale on the order of its Compton wavelength. We now turn our
attention briefly to this zitterbewegung (“trembling motion”) of a particle
described by the Dirac equation.

9.8 Zitterbewegung

Consider the Heisenberg equation of motion for the “velocity operator” o
for a free particle (H, = a - p + fm):

ia = [, H,] = 2afm + 2ip x £ = 2aH, — 2a(a - p) + 2ip ¥ , (9.70)

where L is defined by (9.64) and we have used the commutators

[a;, a,-] = 2i€ijk2k y [(1,’,,3] = Qa;ﬂ . (971)
Now
y 1 . o
ipx D —ala-p) = i€;kpi Xk — 0ijp; = Pj -é[a;,aj] — a;a;j
= —-;-pj{a;,aj} =—-p;, (9.72)

so that, from (9.70),
a = 2i(p — aH,). (9.73)

This equation has the formal solution

a(t) = [a(0) — pH; ']e™ ! + pHT! . (9.74)
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Accordingly, since & = x, we have

x(t) = a+pclH;t - ae 2Ht/H (9.75)

®
I

x(0) — %hca(O)Ho‘l + %ncsz;Z , (9.76)

where now we have explicitly included h and ¢. The first two terms in
(9.75) correspond to the familiar motion a + vt, whereas the last term
represents rapid oscillations (zitterbewegung) superimposed on this motion.
The frequency of these oscillations exceeds 2me?/h ~ 2 x 102! sec™!, and
their magnitude is very roughly of order he(H;!) ~ h/mc = X,. That is,
zitterbewegung is associated with fluctuations of the particle position on
the order of a Compton wavelength.

When (x(t)) is evaluated for an arbitrary state of the particle, with this

state expressed as a superposition of positive- and negative-energy plane-
wave solutions of the Dirac equation, it is found that the zitterbewegung
results precisely from the interference of positive- and negative-energy state
amplitudes. It is worth noting also that wave packets composed of only
positive-energy plane waves are possible only if their spread is comparable
to or larger than A. (Newton and Wigner, 1949). In other words, zitterbe-
wegung is tied to the localization of a wave packet over distances A, and
smaller, where the corresponding momentum spread allows energies large
enough for pair creation. It implies that even a point particle has an ef-
fective linear dimension ~ A, as noted in Chapter 5. Zitterbewegung can
be explained more physically in the language of hole theory. The presence
of negative-energy components in the wave function allows for the possi-
bility that a negative-energy electron in the Dirac sea can make a virtual
(non-energy-conserving) transition to a positive-energy state. This then al-
lows for the possibility that the original positive-energy electron can make
a transition into the unoccupied state (hole) left by the transition, so that
in effect the positive- and negative-energy electrons have exchanged roles.
From the energy-time uncertainty relation the virtual transition of the
negative-energy electron is effective only over a time scale At ~ h/2mc?,
and over such a time is separated from the original electron by a distance
< cAt ~ A./2,i.e., by a distance on the order of the zitterbewegung fluc-
tuation of the electron’s position. Zitterbewegung can thus be viewed as a
consequence of “exchange scattering” between the positive-energy electron
and the negative-energy electrons in the Dirac sea.
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9.9 Hydrogen

1 was scared. I was afraid that maybe [bound-state wave func-
tions] would not come out right. Perhaps the whole basis of the idea
would have to be abandoned if it should turn out that it was not
right to the higher orders and I just could not face that prospect.

— P. A. M. Dirac (1971)

Let us consider first the Klein—-Gordon equation for an electron bou‘n(.i by
the Coulomb potential A° = ® = —e/r, Al = A2 = A® =0. The minimal
coupling substitution p# — p# —eA* in the Klein—Gordon equation (p*p, —
m?)y = 0 yields

[(i% + %)2 +V2- mz] W(x,t) =0, (9.77)

where a = €2/hc = €2 in natural units. Writing ¥(x,t) = d(x)e~ B, we
obtain the energy eigenvalue equation

[(E + %)2 +V2 mz] #(x) = 0. (9.78)

As in central force problems described by the Schrodinger quation we sefek
solutions of the form ¢(x) = ¢(r)Yem, Where Yz, is a spherical harmonic.
This results in the radial equation

[1 i) (rz_a_)_l(H 1)—02+20:E+E2_m2] $e(r)=0. (9.79)

T2 or or r2
Now recall that in the case of the Schrédinger equation the radial equation
is
10 (,0)_ut+l)  2ma, 2mE] $e(r) = 0. (9.80)
r2 or or r2 r

Equation (9.79) has the form (9.80) with the replacements £(£ + 1)‘ —
£t +1)—a?, @ » aE/m, and E — (E? — m?)/2m in the latter equation.
The Bohr energy levels

2

2n2 '’
deduced from (9.80) are therefore replaced by

E,=- n=123,.. (9.81)

E,zll - m2 m a2E',2,; 1 (982)

2m 2 m2 n?
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or
CVZ -1/2
Ep=m [1 + ;ﬁ] . (9.83)

The angular momentum quantum number ¢ associated with (9.79) is ev-
idently given by £(¢ + 1) = (¢ + 1) — @2, or in other words!? ¢ =

—2+J(E+3)2—a2or ' = £— A, with Ar=L+3—/(E+1)? -0

Thus £ does not have integer values, whereas in the Schrédinger case £
must be a positive integer. However, as in the Schrodinger case n’ — ¢
must be an integer, and so if £ is “displaced” from an integer by A4, then
so must n’. Thus we take n’ = n — A, in (9.83):

27 —1/2
o

n—(+ 1)+ \/(e+1)2-a?

These energies, with n=1,2,3,... and £=10,1,2,...,n— 1 for each n, as in
the Schrodinger case, are the allowed energy levels for the Coulomb problem
according to the Klein-Gordon equation.

The Klein-Gordon equation is a valid relativistic wave equation and, like
the Dirac equation, exhibits relativistic phenomena such as zitterbewegung
and the Klein paradox. We shall discuss it further in the following chapter.
It is not possible, however, to include the Pauli matrices o;,0y,0, in the
Klein-Gordon equation for a particle in an electromagnetic field and still
maintain Lorentz covariance. This is a consequence of the fact that o
transforms as an ordinary three-vector rather than a four-vector, while 1
itself is a scalar (one-component) wave function (Schiff, 1968). Thus the
Klein-Gordon equation is a relativistic wave equation for a spinless particle.

As such, the Klein-Gordon equation can be assumed to describe a pi-
onic atom resulting from the capture of a #~ particle by a nucleus, or a
mesonic atom resulting from the capture of a K=. When various correc-
tions including reduced mass and vacuum polarization are accounted for,
the energy levels predicted by the Klein—-Gordon equation are in excellent
agreement with experimental data.

For the Coulomb problem described by the Dirac equation, it is conve-
nient first to put the eigenvalue problem into the form of a second-order
differential equation, and then to proceed as in the Klein-Gordon case by
analogy to the nonrelativistic theory. Define the projection operators

1/1 1 1 1 -1
Px—§(1 1), Pz-'2‘<_1 1) (9.85)

Ey —-Ey=m|l1+

(9.84)

'2The + sign is chosen in order to allow a normalizable solution as a — 0.
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and the column vectors

_py=i(¢FX 9.86)
¢1—P1¢—2(¢+X), (
_p oL $-x 9.87
¢2—P2—2(_¢+x),v (9.87)
where the two-component spinors ¢ and x are defined by writing
¢=(i)=¢1+¢z. (9.88)

Now multiply the Dirac equation y,m#¢ = ma) from the left by Ps:
mPytp = mipy = Poyum = v Pty = Yum Prp = vy, (9.89)
since Pyy, = 7. P11 Then
Y=+ ¥a = (L =) (9.90)
and the Dirac equation for 1 therefore implies the equation
(Yum* = m)(vum + m)gps = (rurp e’ —m*)ehy =0 (9.91)

for 1. From (9.86) it is clear that the eigensolutions of (9.91) will be of
the form
% = ( ‘f;ﬁ )e"E' : (9.92)

For the Coulomb potential we have 7# = p# — eAH, A = —e/r, .a.nd A=0.
In this case (9.91) and (9.92) imply, as may be shown by straightforward

algebra,!?

[_1__6_ (rz_a_) _l(l+1)—o;2—iad-1‘+2o;E'+E2_m2] bu(x) = 0
2
r2 Or or T (9.93)

for a state of orbital angular momentum quantum number £. ' .
This result differs from (9.79) only by the presence of the term zaa‘~1j/ r?,
which accounts for the spin of the electron. The effect of this term is to

13The term @#/r2 results from o - V& with & = —efr.
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replace the orbital angular momentum quantum number £ in the energy
levels (9.84) by the total angular momentum quantum number j = £4 1:14

-1/2

2
E,;=m 1+( ] o — ) ,
n-(i+ 3+ +31-a

where n = 1,2,3,...,£=0,1,2,....,.n—1, and j = %,%,...,n. Unlike the
nonrelativistic energy levels given by the Bohr formula, the levels E,; for
the hydrogen atom described by the Dirac equation depend on both n and
Jj. For historical reasons the levels are still labelled ns;,np;,nd; ... for
£=0,1,2,..., as if £ were a “good” quantum number. Note that

(9.94)

ma? ma* 3mao

4
—_ 6

E,j=m-

The first term in this expansion, the electron rest energy, contributes the
same energy to each level and is therefore spectroscopically unobservable.
The second term gives the Bohr levels of the nonrelativistic (Schrédinger)
theory, and the third term accounts for the fine structure in the energy levels
of hydrogenic atoms. Thus, whereas the nonrelativistic theory predicts that
the levels 2p,/, and 2p3/; should be degenerate, the Dirac theory predicts
the difference (see Figure 3.1)

4 1 4
E(2ps)3)~E(2p1)3) = — = (— - l) = — 45x107%V = 10.9 GHz.

8 \4 2 32

(9.96)
This fine structure derives from the term iae - #/r2 in (9.93), which gives

rise to the spin—orbit coupling (9.68). The latter gives precisely (9.96).
The accounting for fine structure was historically a major success of the
Dirac theory. However, several other effects, not included in the original
Dirac theory, must be included in order to arrive at results in good agree-
ment with precise spectroscopic measurements. One of these, of course,
i8 the Lamb shift, which for the 2s,/5 — 2p,/, splitting is about 1.06 GHz
(Figure 3.1). The Lamb shift may be regarded as largely a consequence
of the coupling of the electron to the vacuum field, which is not included
in the theory outlined earlier (see Chapters 3 and 11). Another effect is
the hyperfine structure associated with the interaction between the electron
spin and the nuclear magnetic field. This results in the splitting of the

"4 For details, and for the Coulomb wave functions, we refer the reader to the books in
the bibliogmaphy, such as Grandy (1991).
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15,2 level into two levels separated by about 1.42 GHz. Nuclear size and
recoil effects give further corrections.

Note that the relevant length scale in the hydrogen problem is roughly
the size of the atom, i.e., about -1 = 137 times the Compton radius of
the electron. As a consequence, phenomena related to the Klein “paradox”
do not appear in the theory of the hydrogen atom.

9.10 The Dirac Vacuum

The requirement that a quantum-mechanical wave equation conform to the
requirements of special relativity led Dirac to the almost incredible pre-
diction of antimatter. Among other striking successes, the Dirac equation
accounted correctly for the fine structure observed in the hydrogen spec-
trum and for deviations from the Thomson cross section observed in the
Compton scattering of light by electrons.!®

This chapter has reviewed some topics that are covered in greater detail
and depth in many other books. Its purpose has been to provide a bridge
between the first part of this book, which has focused on nonrelativistic as-
pects of the QED vacuum, and the remainder, which focuses on the vacuum
in relativistic QED and quantum field theory.

Dirac’s hole theory gives us a picture of the vacuum in which, in addition
to the zero-point electromagnetic field, there is a sea of filled negative-
energy states. Electron—positron pairs can be “kicked out” of this Dirac
vacuum by a uniform electric field, by a photon of energy hw > 2mc?, or
by a potential acting to localize an electron to a region of space whose
dimensions are comparable to or smaller than the Compton wavelength.
The virtual electron—positron pairs of the vacuum lead us to regard the
vacuum furthermore as a polarizable medium in which the field of a point
charge, for instance, polarizes the vacuum in its vicinity and results in a
difference between “bare” and “observed” charge.

As discussed in the following chapter, the existence of antiparticles is
closely intertwined with Lorentz invariance, i.e., the requirement that quan-
tum theory be consistent with the theory of special relativity. Quantum
theory and special relativity together require negative-energy states and
the existence of antiparticles. The fact that the number of particles or
antiparticles can change as a result of pair creation and annihilation pro-
cesses suggests a theory involving general particle creation and annihilation
operators, analogous to the photon creation and annihilation operators of

15Compton scattering and the Klein-Nishina formula derived from the Dirac equation
are treated in standard texts such as Sakurai (1976).
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QED.'This is the theory of second quantization, or quantum field theory.
to which we now turn our attention. ’
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Chapter 10

Introduction to Quantum
Field Theory

The inhabitants of the universe [are] conceived to be a set of
fields — an electron field, an electromagnetic field ... this point of
view ... forms the central dogma of quantum field theory: the essen-
tial reality is a set of fields, subject to the rules of special relativity
and quantum mechanics; all else is derived as a consequence of the
quantum dynamics of these fields. — S. Weinberg (1977)

10.1 Introduction

The quantization of the electromagnetic field as in Chapter 2 allows us to
describe the creation and annihilation of photons. Since the creation and
annihilation of particles of all kinds is arguably the hallmark of relativistic
quantum physics, we now turn to the formulation of quantum mechanics in
terms of quantum fields, in a manner analogous to the quantization of the
electromagnetic field.

As in the example of the electromagnetic field, all quantum fields have
vacuum states and zero-point energies. We begin our discussion in the fol-
lowing section with the simplest example of a quantum field theory, namely,
the quantization of the Schrédinger field ¥(z,t) in one spatial dimension
r. Next we quantize the Klein-Gordon field in order to emphasize the
profound differences between relativistic and nonrelativistic quantum field
theories. After considering also the quantization of a charged scalar field
in Section 10.4, we turn our attention to the principal goal of this chapter,
the quantization of the Dirac field. This will set the stage for a discussion,

UL X1
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mainly in Chapters 11 and 12, of some relativistic QED effects, includ-
ing effects associated with the vacuum state of the Dirac field. We also
return once again to the quantized electromagnetic field and consider the
“propagators” associated with quantum fields.

10.2 Second Quantization: Nonrelativistic

When we quantize a one-particle, one-dimensional system we take its po-
sition z and momentum p to be operators in a Hilbert space, satisfying
[z,p] = ih. The “vectors” of the Hilbert space are states |¢), and the wave
function of the system at time ¢ is the projection Y(z,t) = (z|¥(t)). The
wave function, of course, is a c-number, not an operator. In second quanti-
zation, however, we take 1(z,t) to be an operator, just as the electric and
magnetic fields are operators when the electromagnetic field is quantized.
¥(z,t) becomes a quantized field, hence the name quantum field theory.

To introduce the notion of a quantum field theory as simply as possi-
ble, we consider first the second quantization of the Schrodinger equation,
i.e., the quantization of the “classical” c-number field ¥(z,t). We begin
heuristically with the familiar expansion of the wave function in terms of a
complete set of eigenfunctions ¢n (z) of the Hamiltonian:

P(z,t) =Y an(t)én(2), (10.1)

n

where a,(t) = an(0)e~*Ent. Let us suppose that, when we second-quantize
the theory and make ¥(z,t) an operator, an(t) becomes an operator in
a Hilbert space while ¢,(z) remains an ordinary, c-number function of
z. Then the Hermitian conjugate of ¥(z,t) will involve the Hermitian
conjugate of a,(t):

ol(z,0) = S al()65(2) (10.2)

and

[W(z, 1), w1, 0] = 3. Y lan(®), ah ()] (=")én(2). (10.3)

At this heuristic level there is nothing to tell us what the commutators in
this expression should be. We will show later that the equal-time commu-
tation rules for second quantization can be taken to be

Wz, 1), ¥l (2, t) = 6(z — &), [¥(=,1),%(z" )] = 0. (10.4)
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These rules, together with the orthonormality relation

/ dogn()d5 (') = bmn | (10.5)

imply that!
[an(2), 8} (1)] = 6mn, [an(2), am(t)] = 0. (10.6)

We m‘ight guess furthermore that in the second-quantized theory the
Hamiltonian can be expressed in the form

H=Y Enala,, (10.7)

analogous t:,o the Ha.mil.tonian for the quantized electromagnetic field. This
together with the previous commutation rules, suggests that our quantum,
field theory reduces in essence to a theory of uncoupled harmonic oscillators

b

with a, and al playing the role of annihilati i
. ' ion and creat
particles in “mode” ¢,(z). ton operators for

The vacuum state of our quantum field is the state in which there are
no particles in any state, i.e., a,|0) = 0 for every n. Likewise ai]O) = |1)n
is a §tate in which there is one particle of energy E,, and anam|0) is a two-
particle state of total energy E, + E,,. The states obtained by operating

on |0) with creation operators in this way are called Fock states.
The state

#1(2,0)10) = 3 ol 0)10)65(2) = 3 [1)ngy(2)e Bt (10.8)

is a one-particle state in which the particle is at = at time t. Evidently

the .01;.>erator 1/)7 (z,1) creates a particle at z at time ¢, and likewise 9(z, t)
annihilates a particle at z. ,

Beforg going further with this elementary quantum field theory, let us
first provide a more systematic basis for it. ’

l .
Note from (10.1) and orthonormality of the ¢, that an(t) = fdm[;(w,t)q&,‘,(z) and

ty =
rf,,(t) = fdztl;f(z, t)¢n(x). The commutators (10.6) then follow from the assumed field
commutators (10.4). Note also that we can derive the latter if we first assume (10.6)
and use the completeness condition Z" dn(z)én(z') = 6(z — ). '

2Simil : .
”““‘.m arly, states of definite photon number in QED are often referred to as Fock
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Lagrangian, Action, and Hamiltonian

In our quantum field theory we would like the Schrodinger equation

0y 162 ‘
to become an operator equation derived from the Heisenberg equation 6f
motion

i = [, H). (10.10)

Now if we assume the equal-time commutation relations (10.4), a H’émilto—
nian that produces (10.9) via (10.10) is

H= /dw‘r(z,t) [—%aﬁ; + V(z)] ¥ 1). (10.11)

This will in fact turn out to be the appropriate Hamiltonian.

In Section 4.2 we reviewed briefly the procedure for constructing a La-
grangian and Hamiltonian for a classical mechanical system. The proce-
dure in classical field theory is similar. In this case the analog of the action

.2 dtL(g, 4,1) is®
t2
S[Y) = /t dt / doL ], (10.12)

where L is the Lagrangian density and [ dzlL the Lagrangian. The notation
S[¢] and L[] is used to denote the fact that S and L are functionals of
the field ¥, i.e., they associate according to some rule a number with a
function . As in classical mechanics we seek to derive equations of motion
by making the action an extremum with respect to variations in ¥, keeping
¥(z,t1) and ¥(z,t2) fixed. The variation in the action is

o oL oL . oL oy
6s= | dt/dx [%6¢+%6¢+———6(6¢/6z)6<a)], (10.13)

where, analogously to the case of classical mechanical theory, we assume
that L does not depend on ¥, 824 /0z?, or higher derivatives. It is easily
seen from the definition of the derivatives that

5 = gt-(w), 6 (%%) = ;%(w), (10.14)

3The limits on the integral over z in (10.12) may be assumed to be 0 and L, with
¥(0,t) = ¥(L,t) under the assumption of periodic boundary conditions.
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so that

sS

I

ta aL aL a oL 0
/t. dt/dz [WM + 5:[5(5'#) + Wa—z@'ﬁ)]

ta oL d [faL d oL
dt —_— - =
[, f =55 (55) - emmaram] v 0019
The .sec.ond equality follows by partial integration; the surface terms in the
partial m.t?gration over z vanish under the assumption of periodic bound-
ary conditions, and those in the partial integration over ¢ vanish because
61/)(.:1:,t1) = éy(z,t2) = 0 by assumption. Requiring that the variation 65
vanish for any arbitrary variation 8§ at each z, we obtain

o _ 9 (QL) 8 oL
| 3% 9 \ay) " Bzo@pien) (10.16)
Now again analogously to the classical theor i . .
y of point particle d
we define the field momentum conjugate to 3 as p particle dynamics,

oL
)= — .
m(z,1) % (10.17)
And.in analogy.to the definition of the Hamiltonian H = pg — L in classical
particle dynamics, we define the field Hamiltonian

H= / dz[r(z, )9(z,t) — L]. (10.18)

The Lagrangian density L must be chosen such
La, that (10.16
the Schrédinger equation for ¢. The choice ( ) produces

10¢y oy*

L=iy"y— 390 95 VY'Y (10.19)

accomplishes this. With this L the momentum conjugate to v is found from
(10.17) to be

n(z,t) = iY*(z,t), (10.20)
and the Hamiltonian (10.18) becomes

= Julre-ws 25 e

i

1..0% .
/d’ ¥ gz tVY ¢] , (10.21)

where the second equality follows from a partial integration.
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Quantization

In the formalism just outlined ¥(z,t) has been assumed to be a classical
field. We now want to quantize the field ¢, i.e., to second-quantize the
Schrodinger equation. To do this we make i an operator, replace ¥* by
¢t, and impose the equal-time canonical commutation rules, analogous to
[z,p] = i for particles,

[¥(z, 1), 7(z’,1)] = #6(z — '), [W(z,t), ¥ )= [7(z,t),x(z',1)] = 0,
(10.22)

or, from (10.20),

[¥(z, 1), ¥l (2, )] = 6(z — '), [¥(,1), (=", 1)] =0, (10.23)

which is (10.4). Thus the quantized version of the Hamiltonian (10.21),

H= / dzpt (z,t)[—%% +VE@)(,1) (10.24)

is indeed the Hamiltonian for which the Heisenberg equation of motion for
o is the Schrodinger equation for the (operator) field ¥.

The expansion (10.1), together with the Heisenberg equation (10.10),
implies the equation of motion

ian = [an, H) (10.25)

for the annihilation operator a,; of course this is a special case of the general
Heisenberg equation of motion iA = [4, H]. Use of the expansion (10.1) in
(10.24) also implies

H=Y Endla,, (10.26)
n

so that @, = —iEna, and an(t) = an(O)e"E“‘ for the (free) Schrodinger
field.

Other operators find a similar expression in terms of ¢ and 1/),7. For
instance, the coordinate operator z is

r = /dxibt(z,t)mb(a:,t): z:E:a:‘n(t)a,,(t):c:,,.ﬂ
3N Zmnoma(t), (10.27)

it
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glhire Tmn = [ dzd},(2)zdn(z) = (dmlz|¢n) and opmy = ajna,.. Observe
a

t

[o'mn;"'ij] = [ajnaﬂ’ai aj]
= a:‘n(a!a" + bin)aj — a!(aj,,aj + 6jn)an
= Omjbin — Tinbjm , (10.28)

which will be recognized as the commutation relation (4.79). Indeed, our
treatment of an atom in Chapter 4 in terms of the operators o, aI’ld in
particular a “two-state” atom in terms of the Pauli operators o a.nd’a, was
a first step toward a quantum field theory of the Schrodinger wave func,tion.

Bosons and Fermions

Recz?,ll that zN(z,t)IO) is a one-particle state with the particle at z. A one-
particle state |®;) described by the (c-number) wave function ¢(z,t) may

evidgntly be obtained by multiplying ¢1 (2,t)|0) by the amplitude ¢(z,t)
and integrating over all z: ’

2.0) = [ dz(z, 09l 0l0) (10.29)
Consider now H|®,), with the Hamiltonian H given by (10.24):
1 ! 1 82 !
He) = [l @ 0o + VEWEY [ dodte, 0l 000)

! / 62
= /d:l; /dzz/ﬁ(x ,t)[—%m+ V(2')g(z, ) (', )91 (=, 1)[0)

_ deut 1 §?
= zpl(z,t)[~5 53 + V(@)é(z,1)I0) , (10.30)
where we have used (10.23). Thus we have H|®,) = E|®,) if
10?2
— S+ V(2)e = B9, (10.31)

e, if ¢(z,t) = pn(x)e *E~ is an eigenstate of the first-quantized Hamil-
tonian.

Similarly the two-particle state |®;) described by the wave function
é(x1, z2,1),

|®,) = /dll/d:ﬂz‘ﬁ(-‘h.Zz,t)d)t(m,i)lbt(:cz,t)|0), (10.32)
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may be shown to be an eigenstate of H if ¢(z1, z2,1) satisfies a two-particle

first-quantized Schrodinger equation. Note that, since [1/;1 (z, t), ¢t(z' , t)] =
0, we can interchange z; and z in the integrand in (10.32) without changing
the state |®@,). We deduce therefore that

¢(211$2at) = ¢(Z2,.’L’1,t). (1033)

In other words, our quantum field theory describes bosons, and it is not
surprising therefore that we obtained the boson commutation relations
[a,.(t),a:‘,.(t)] = bmn, [an(t), am(t)] = 0. In order to have a quantum field
theory describing fermions, we must evidently have field commutation rules
different from (10.23), since these imply bosons.

If we are dealing with fermions we should have

¥t (@, 09t (z,1)0) = 0, (10.34)

since we cannot put two particles in the same state. Now if we interchange
z; and zo in (10.32), and use the fact that #(z2,z1,t) = —¢(z1, z2,1) for
fermions, we deduce that

15) = / dzy / drad(er, 22, 091 (21, )0t (22, 8)[0)
- / dz, / dz26(z1, 22, )01 (22, )0l (21,1)10) , (10.35)

and consequently that

Wz, )0l (21,8) = =l (21, )91 (22, 1). (10.36)

In other words, the anticommutator

ot (@, )0t (22, 1) 491 (22, )91 (21,8) = (91 (21, 1), 9T (22, )} = 0. (10.37)

It follows by Hermitian conjugation that {¢(z1,t), ¥(z2,t)} = 0. In fflct. to
second-quantize the Schrodinger equation for a fermion system we simply
replace commutators by anticommutators. In particular, the boson com-
mutation rules (10.23) are replaced by

(¥(z, 1), 91 (2", 1)} = 6(z — =), {¥(=,1),9(=', 1)} =0.  (10.38)

Note that these anticommutators, together with (10.1), imply the fermion
algebra for annihilation and creation operators:

{an(®), 8L, ()} = 6mny {8n(t),am(t)} = 0. (10.39)
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The Hamiltonian retains the form (10.26), but with a, and al now being
annihilation and creation operators for fermions. It follows from (10.39)
that

(a:’,a,,)2 = al(l - ala,,)a,, = ala,, , (10.40)

so that the eigenvalues of the number operator a:'. @, are 0 and 1, the familiar
result for fermions. Denoting the corresponding eigenstates by |0) and |1),

we have a:r.a,.a,.|1) = 0 and ala,.a,th) = al(l - a,ta,,)|0) = a:[.|0) = |1).
Thus a,|1) and allO) are |0) and 1), respectively, justifying the terminology
of annihilation and creation operators for the fermion operators.

Before proceeding to an example of relativistic quantum field theory, we
note that, in going from the Hamiltonian (10.21) to the second-quantized
version (10.24), we implicitly chose a normal ordering of 3 and 1/))[ — cre-

ation operators to the left of annihilation operators. Since we can write
(10.21) equivalently as

1 10%y 102¢* 1
= de |={ —yp*=— _ 4= 1o . . .
# / 1[2( Ve Y3 ax2>+2('/’ Vy+yVey )], (10.41)
we can equally well write the second-quantized Hamiltonian as

H

1 1 6?
Jappien -3 + V@) vie0)
1 62
29z
= Z %E’n(ala" + a,,al)

+ g9 [~ g + V@) v

= ;En(alan + -;-) (10.42)

if we use (10.6). In other words, if we choose a symmetric ordering of
annihilation and creation operators in the second-quantization prescription,
we obtain the zero-point energy 3" %E‘n for the vacuum state of the second-
quantized Schrodinger field. This is discussed further in Section 10.7.

10.3 The Klein—Gordon Field

In Section 9.2 we touched briefly on the Klein-Gordon equation, noting
that it admits negative-energy solutions and that there was a difficulty in
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the single-particle theory with the definition of a probability current.® It
is easy to define a conserved current for the Klein—-Gordon equation; one
finds that the spatial component,

. i ( oyt 0¥ i .

)i = _2m ('/) Y - ¢ 9zt - _2m(¢al¢ - '/) a|¢)1 (1043)
has the same form as in the case of the nonrelativistic Schrédinger equation,
but that the time component

, i (.0 oy*
]ozpzsz(,/, %_ g’t) (10.44)

is different, involving derivatives of ¥ and ¢* with respect to t. (The
corresponding density p in the Schrodinger case is ¢*¢.) For the plane-
wave solution ¢ = e—*(Et=K-X) of the Klein-Gordon equation, we have

p= % - ii. C+m?, (10.45)

which is not a positive-definite probability density because of the negative-
energy solutions (E = —vk? + m?). The difficulty with the Klein—Gordon
equation, then, lies in the interpretation of negative probability densities.
In the case of the Dirac equation, the density p = ’(btd) is positive—definite
irrespective of negative-energy solutions.

We will now consider the second-quantization of the Klein-Gordon field,
and show among other things that the difficulty with the single-particle
Klein-Gordon theory is removed by quantum field theory. (Section 10.4)

The classical action whose variation yields the Klein-Gordon equation .

is

S[¥]

o [#3](5) -t -]

[ #2510 6@0u8(2) — m* v @) (10.46)

where z stands for the space—time point (x,t) and d*z = d®zdt. The
reader may easily check that the generalization of (10.16) to three spatial
dimensions, together with the Lagrangian density L implied in (10.46), gives
the Klein—-Gordon equation. The momentum conjugate to ¥(z) is

n(z) = 2_;) -, (10.47)

4Schrodinger had considered this equation before Klein and Gordon, but abandoned
it for these and other reasons.
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so that the Hamiltonian is
. 1 .
H = [&alr(eite) - 1= § [ @2l + (F9(@)? + mi?(a)]
1
3 / Eor(z) + V() + m29¥()]. (10.48)

(We are assuming here that y(z) is a real field.) In second quantization

we use the generalization of the commutation rules (10.22) to three spatial
dimensions,

[¥(x, 1), 7(x', )] = i6(x — x'), [9(x,¢), ¥(x',1)] = [x(x, 1), n(x’,1)] = 0.
Note that this use of equal-time commutators implies a choice of(%llos':)?e2
cific Lorentz frame. However, the theory may nevertheless be shown to be
Lorentz-invariant, and in particular these commutators may be generalized
tc? arbitrary (space-like) separations. It is easily verified that the Hamilto-
nian (10.48), with ¢(z) and 7(z) operators, gives the Heisenberg equations

of motion

V=—i[y,Hl=m, &=—i[r,H) =V — m?y, (10.50)

i.e., the Klein—Gordon equation for the field operator ().
We wish to write the analogue of equation (10.1) for the Klein-Gordon
field. Now, however, we have to allow for both positive- and negative-energy

eigenfunctions, ¢£+)(x) and ¢§(_)(x), respectively:

b(x,1)

(+) + - -
%{Ak 0¥ ) + AL ()7 (x)]
= YUP ek 4 4l @)k x|

- ,
- %[Ag:')e—i(E;‘t—k-x)+A§{—)65(Ekt—k-x)]

_ +) _—ik-x =) _ik-
= DA Ak, (10.51)
k

Since we took ¥(x) classically to be a real field, in second quantization it

must be Hermitian. This implies that Agc_) = AL, where A} = A;:'):

W(z) = Y lAge 7 4 Al i), (10.52)
k
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Since there is a continuum of possible k values, we replace (10.52) by

¥(x,t) = / (%1;—32—115"[41()‘5-“" + at (k)e*=). (10.53)

The factor 1/(27)? arises as in the replacement 3} — V/(@2n)) [ &3k

familiar from the electromagnetic case. The factor 1/2E; is included in

order to have a Lorentz-invariant measure, as discussed in Appendix G.
Using

m(x,t) = P(x,t) = —i / zg—jr';—ai;—km[a(k)e““ —al(k)e'*#), (10.54)

we can solve for a(k) and af(k) in terms of ¥(x,t) and 7(x,t). Then the
commutation rules (10.49) imply

[a(k), at (k)] = (27)*2E:63(k — k') (10.55)

and [a(k),a(k’)] = 0, i.e., boson commutators for the annihilation and
creation operators. In terms of the annihilation and creation operators the
Hamiltonian (10.48) is that for a (continuous) sum of uncoupled harmonic
oscillators: '

1 dk 1

=3 WTEI:— E} [a"(k)a(k) + a(k)at (k)). (10.56)

H

As in the case of the electromagnetic field, a(k) and af (k) are particle
annihilation and creation operators. In the case of the Klein-Gordon field,
they annihilate and create particles of rest mass m, momentum k, and
energy Ex = vkZ + m?. The vacuum state |0), as in the electromagnetic
case, satisfies a(k)[0) = 0, whereas at(k)IO) is a state with one particle of
energy E; and momentum k, etc.
The expectation value of H in the vacuum state is
1 &k 1 1

(Ol&10) = 3 EW—)S-EE;,(OIa(k)at o) = 5 / PRE%(0), (10.57)
where we have used (10.55).5 Like the electromagnetic field, therefore, the
Klein-Gordon field has an infinite zero-point energy. This infinity can be

5Note that the state aT(k)|0) is not normalizable, since it has infinite norm:
(Ola(k)a*(k)lo) = (27)32Ex6%(0). This is because it is a plane-wave state with defi-
nite momentum, and so the particle's position probability distribution is uniform within
the infinite volume §3(0). This problem is easily remedied (see, for instance, Itzykson
and Zuber, 1980, p. 211) and will not concern us. .
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discarded by simply redefining the zero of the energy scale. Using (10.55)
and dropping the zero-point energy, we then have

Bk 1
H L B
S / oy 75y P! (9a0) (10.58)
In other words, we put the annihilation and creation operators in normal
order and drop the zero-point term. Normal ordering is often indicated
by colons. Thus the Hamiltonian (10.58) is denoted : H :, and similarly
: a(k)at.(lF) = at (k)a(k). That is, within the colons we can freely commute
the annihilation and creation operators to obtain normal-ordered products.

Discrete and Continuous Sums over k

When we worked with the quantized electromagnetic field we chose to write
the sum over modes in the discrete form )"y, rather than as [d®k}",.
We can do this for the Klein-Gordon field, too, in which case the normally
ordered Hamiltonian takes the familiar form

tH = ZEkaLak , (10.59)
k

where now
CBET (10.60)
The field ¥(x,t), similarly, takes the form

1 1/2 )
¥(x,1) = % (W) [ag () * + af (1)e=K %), (10.61)

with ap (t) = a) (0)e~*E+* for the free field and where V is a quantization
volume. This is basically of the same form as the vector potential (2.52)
in free space, except that (a) ¥(x,t) here describes a scalar field, with
no polarization index A, and (b) Ex = vk2? + m?2 replaces wi = |k| (in
units with A = ¢ = 1). The “extra” factor of v/4r in (2.52) is simply a
consequence of having chosen Gaussian units for the electromagnetic field,
and results in the expression (EZ + BZ)/8x rather than (E? + B2)/2 (in
Heaviside-Lorentz units) for the energy density (see Section 10.8).

Causality and Spin Statistics

Acting on Fock states, 1(z) and ¥(z') change the number of particles at
space-time points z and z’, respectively. If (z —z')? = (t - t')2 — (x —
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x')? < 0, i.e., if the separation between z and z’ is spaceli!(e', the creation
and annihilation events cannot, according to special relativity, affect one
another. Thus we should have [¢(z), %(z')] = 0 if (z — 2')* < 0. Now from
(10.53) and (10.55) we have

dk e 1
[¥(2), ¥(=")] = /(2,,.)3/(271.)3 4EEy

+ ol (), a()]e e )

([a(k)a aT(k')]e’ik'xeik’.x'

3 . 1 > _xl
d°k 1 e—'k‘(x-z)— e:k»(x )]

(2r)3 2Ex
= _(_l.s_k..-_!_[e""Ek(t—tl)eik'(x—x')
- (27)3 2E;

- e"Ek(f-t')e—ik(x—X')]
&k ik-(x-x') 1 . ’

= —i[ ——3¢ —sin Ex(t—t
= z/ (27r)3e E; k( )
= zA(z - 1?/). (1062)

Since it involves four-vector dot products and a Lorentz-invariantlmeasure,
A(z — z') is Lorentz invariant. Then since A(z—2')=0 for. t—t'=0and
is Lorentz invariant, it vanishes for all (z —z')? < 0, as required. Note also
that

A(—z) = —A(=), (10.63)
A(z) = —63(x) att =0, (10.64)
and that A(z) satisfies the Klein-Gordon equation:
o 24+ m? = 10.65
(_3—{2-_v +m? ) A(x)=0. (10.65)

It is crucial, in order to satisfy the causality requirement, that we quan-
tize the Klein—-Gordon field using commutators. Had we used anticom-
mutators and replaced the commutator on the left side of (10.62) by an

anticommutator, with a(k) and af (k) being fermion annihilat'ion' and cre-
ation operators, we would get a nonvanishing result for spacelike 1nterYals.
In fact it is easy to see that we would get a plus sign ?nstead of a minus
sign between the two terms in brackets in the second‘lme of (10.62),. and
the resulting expression does not vanish for spacelike l'ntervals. This is an
example of the “spin-statistics theorem,” which requires us to use com-
mutators for particles of integer spin and anticommutators for particles of
half-integer spin (Section 10.5).
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Necessity of Negative-Energy States

An important difference between our second quantization of the nonrela-
tivistic Schrédinger equation and the relativistic Klein—-Gordon equation is
that in the latter case there are negative-energy eigenfunctions in the field
operators (compare (10.1) and (10.52), for instance). The negative-energy
states are essential for causality: without negative-energy contributions
equation (10.62) is replaced by

d3k ; " ,
[¥(z), ¥(z')] = — Wé_z‘_ke—lEk(t—f )eik (x-x') (10.66)

which does not vanish for spacelike separations.

The second quantization of the Klein—Gordon equation has thus brought
out two very important points connected with Lorentz invariance: (1)
Lorentz invariance and causality dictate whether the particles associated
with the quantized field are bosons or fermions, and (2) Lorentz invariance

and causality require the existence of negative-energy states and, therefore,
antiparticles.

10.4 Charged Scalar Field

The conserved current j* associated with the Klein—-Gordon equation van-
ishes if, as we have assumed, 1 is real or, in the second-quantized theory,
the operator ¢ is Hermitian [see equations (10.43) and (10.44)]. Further-
more the field theory of the preceding section does not really distinguish
between particles and antiparticles. For these reasons we now allow for
¥(z) to be non-Hermitian.

Consider the non-Hermitian field

1 .
P(z) = 7—2-[¢1(z) + i2(2)), (10.67)

where 1, (z) and 9,(z) are Hermitian Klein—-Gordon fields. We assume that
¥1(z) and y,(z) are independent fields in the sense that the action when
both fields are present is just the sum of two actions of the form (10.46),

Sy, 2] = /d4:c-;—[6“1/)13y1/11+3"¢23,‘1/)2—m21/;f(z)—mzz/)%(:l:)], (10.68)

and that m(z) = ¥(z),i = 1,2, and

[wi(x,t), m;(x’, 1)) = i6;;6%(x — x), (10.69)
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[¥i(x,1), ¥;(x', 1)] = [mi(x,1), 7; (x',t)] = 0. (10.70)
Once again the use of equal-time commutators implies a particular Lorentz

frame. .
Using (10.67), we can write the (normally ordered) action (10.68) in

terms of ¥(z) and 11;*(::):
sth.oll=g [des ot —miylv: . G0
This implies 7(z) = ¥ () and the Hamiltonian
H:%/d%:w’fﬁw’f-v¢+m2¢"¢: . (10.72)
It follows from (10.67) and (10.69) that the equal-time commutator

[$(x, 1), 7(x',1)] = i6>(x — x), (10.73)

whereas the other equal-time commutators, except for the Hermitian con-
jugate of (10.73), all vanish as usual.

To write ¥(z) and pt (z) in terms of annihilation and creation operators,
we note that 1;(z) and ¢»(z) may both be written in the form (10.53):

ne = | Tt (e +af (e,

2y 2B
Pa(z) = / Z;%2—115,:[az(k)e-"“ + a‘; (k)e'* 7. (10.74)
A consequence of (10.67) is that
W) = [ ragpiate e+ saet,
i) = (—;;l;—s-f;—k[b(k)e“k" +at(k)eit 7, (10.75)
where 1
a(k) = ﬁ[al(k) + iay(k)), (10.76)
b(k) = —%[al(k) — ias(K)]. (10.77)

Since [a;(k), af (k)] = (27)?2Ex6:;6%(k — K'), it follows that

[a(k), ol (k)] = [b(k), b (K")] = (27)*2E6%(k - K'), (10.78)
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and that [a(k), a(k’)], and so forth, are zero.
Thus far we have performed trivial manipulations starting from (10.67).
To see what all this accomplishes, consider now the operator

&k 1

Q= [z vti-ity:= Gy 7814 0000~ (4(8)]) = No— 1V,
(10.79)
where Pr 1
N, = Wmat(k)a(k), (1080)
a3k 1
N, = / mef(k)b(k). (10.81)
N, and N; are number operators for a particles and b particles, just as
Bk 1
and PE1
Nz = Wﬁ;az(k)az(k) (1083)

are number operators for particles 1 and 2 associated with the fields ¢¥; and
¥2. Since a;(k)|0) = az(k)|0) = 0 for the vacuum state |0), we have

N1]0) = N3|0) = N,|0) = N,|0) = 0. (10.84)

N1, N3, N,, and Nj all commute with the Hamiltonian, and so are constants
of the motion for the free (uncoupled) quantum field under consideration.
The Fock space for this field may be taken to be eigenstates |n,,np) of N,
and Nj or eigenstates |ny, n3) of Ny and Nj.

Q corresponds to charge. Evidently the a particles have charge +1
and the b particles have charge —1. Note from (10.75) that y¥(z) acts to
annihilate an a particle and create a b particle, whereas 1/;‘ annihilates a b
particle and creates an a particle. It is also clear that 1y acts to decrease
the charge by one unit and ¢t acts to increase the charge by one unit.

Particles @ and b are antiparticles of each other, carrying the same mass
and opposite charge. A Fock state |ng,ns) with Ng|ng, ny) = nglng, ns)
and Ny|n,, np) = np|ng, np) has charge eigenvalue ¢ = ng — n;, which of
course can be positive or negative. What has been accomplished here by
introducing the non-Hermitian fields ¢ and ¢f is a reinterpretation of the

quantity Y*y¢ — lj)“l/) appearing in the conserved Klein—Gordon current,

equation (10.44). At first it seemed that the non-positive—definiteness of
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p signalled a fatal difficulty with a probability interpretation of the Klein-
Gordon equation. However, we see now that we can effectively reinterpret
the conserved Klein—-Gordon current as a charge current rather than a prob-
ability current. A charge current, of course, can be positive or negative.
This reinterpretation of the Klein-Gordon current, following the initial re-
jection of the Klein—-Gordon equation, was proposed by Pauli and Weisskopf
in 1934.

It is worth mentioning that the “charge” quantum number here is not
necessarily electric charge. More generally charge appears as a couplmg con-
stant in quantum field theory. For instance, the mesons K 0 and K are an-
tiparticles that are electrically uncharged but have different ¢ ‘strangeness”
charges +1 and —1.

10.5 The Dirac Field

Let us consider now the second quantization of the Dirac equation, (i@ —
m)y = 0. Again we proceed from an action whose variation produces, in
this case, the Dirac equation. We express this action in terms of ¥ and

T=vip=uty.
S, 9] = / dizl = / () (i — m)v(z). (10.85)

It is trivial to verify, using again the three-dimensional generalization of
(10.16), that the variation of Y or 9 gives the Dirac equation for 4 or b,
respectively. From the definition

aL = 0 . "'
% vy =i (10.86)
of the momentum conjugate to ¢ we obtain the Hamiltonian

B o= [ @i -1 = [ @ativti - mpw)

= [@alivti -l i iV - m
= [@al-ivtyty- v+ mityty
= / Bryl[—ia -V + maly, (10.87)

which is consistent with the Hamiltonian form (9.49) of the Dirac equation.
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To quantize the field ¥(z) we must impose commutation rules. We
saw in Section 10.2 that creation and annihilation operators satisfy fermion
commutation rules if anticommutation relations are assumed for the field.
Since the Dirac equation describes fermions, we assume equal-time anti-
commutation relations for the Dirac field:

{¥a(x,1), ma(x', 1)} = ibap63(x — x') (10.88)
{a(x,1), BH(K', 1)} = 8agt®(x — x'), (10.89)

together with {a(x,t),¥s(x’,t)} = 0 for the four-component field ¥(z).

As in the example of the Klein—Gordon field, we now expand v and 1,[)Jr in
terms of eigenfunctions multiplied by annlhllatlon and creation operators.
For the free Dirac field the appropriate eigenfunctions are the positive- and

negative-energy plane waves u(p)e™*?"® and v(p)e'?* defined in Section 9.2.
We write, in analogy to (10.75),

d3p m 2 . . . .
40 = [ G E L@ +d o o), (1090)

W = (_‘21771)%% Z["! @t (@) + di(p)vit (p)e=77]
d®p m
A E W@ o1y + ()T (o).

(10.91)

Following convention, we write d°p instead of the d3k used for the Klein—
Gordon field. The 1/FE factors, with E = \/p2 + m?2, appear as in the
Klein-Gordon case in order to have a Lorentz-invariant measure of integra-
tion. The factor m and the notation b; and d; are, again, conventional.
By Fourier transforming both sides of equations (10.90) and (10.91), we

can express the operators b;(p) and di(p) in terms of ¥(z) and ¢t(z). It

6Th-e reader may easily verify that these anticommutation relations, together with
the Heisenberg equation of motion iy = [, H], give the Dirac equation for the operator
V(). See Lee (1981), p. 33, for this short calculation. See also the remarks following
equation (10.49) regarding the use of equal-time commutators. The same remarks apply
here in the case of equal-time anticommutators.
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then follows from (10.89) and the properties of the spinors u(p) and v*(p)
listed at the end of Section 9.2 that’

i) = 1), @) = @rP 26,8 —p),  (10.9)

and that all the other anticommutators, such as {b; (p), b;(¢")}, vanish.

Particles and Antiparticles

The anticommutation relations (10.92) mean that bi(p) and d;(p) are fermion
annihilation operators and that b:‘(p) and d] (p) are fermion creation op-
erators. [Recall the remarks following equation (10.40).] The Hamiltonian
(10.87) can be expressed in the form

3
H=/_d_P_m

(27)3 (b} (p)b: (p) — s (p)d:' 2) (10.93)

2
=1

i

when the expansions (10.90) and (10.91) are used together with the prop-
erties of the spinors.
We interpret bi(p) and b:‘ (p) as annihilation and creation operators

for (positive-energy) electrons.® With this interpretation b! (p)bi(p), with
eigenvalues 0 and 1 in this (fermion) case, is the number operator for elec-
trons with four-momentum p and helicity index 1.

To interpret d;(p) and d:[ (p), we use (10.92) to write

3 2 E
H= [ kY b @)+ d i)~ o OO (1099
i=1

The lowest possible energy is therefore that for which the number of b
particles and d particles is zero. The b particles have already been assumed
to be positive-energy electrons. Now recall that in the Dirac hole theory the
lowest possible state is that in which there are no positive-energy electrons
and all possible negative-energy electron states are filled. This suggests

that we should interpret d:‘ (p)di(p) as the number operator for holes (i.e.,
unfilled negative-energy electron states) of four-momentum p. If the number

7 Although this is a completely straightforward exercise, the reader is encouraged to
do it, if only to check his understanding of the notation.
8We assume here that the spin—1/2 particles described by the Dirac equation are

electrons.
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of positive-energy electrons is zero, and there are no unfilled negative-energy
states (holes), the energy of the Dirac vacuum is a minimum.

We therefore interpret d;(p) and d! (p) as annihilation and creation op-
erators for a hole of four-momentum p, i.e., for a positron.
The charge operator

Q

&Bp S m
[e=uto= [ 3 Ftl ko) + el o)

Pp_$~mt t E
/ (27)? ; E[bs (p)bi(p) — d; (p)di(p) + (27r)3r—n-63(0)]

(10.95)

1"‘eiil\1forces gur interpFetation of the b and d operators. If the electrons have
ﬁcha}'ge 1, and.thelr a.ntiparticles (positrons) have “charge -1,” then the

st two terms in the integrand in the last line of (10.95) represent the
charge above and beyond the charge

2
Qo= / dSPZ: 5%(0) (10.96)

:)f the Dirac sea of filled negative-energy electron states. That is, these
erms represent the charge due to positive-energy electrons and positrons

;I‘h‘e infinite §3(0) in ('10.95) and (10.96) is a consequence of the anticom-
mutation rule (10.92) w1l‘:h p = p’. It appears similarly in the zero-point
energy (10.57) of the Klein—Gordon field. To interpret this infinity, we ob-
:(}elrve that, ha(.l we chosen to write 1(z) as a discrete sum over all p rather
an the contmuottls sum (10.90), the anticommutators (10.92) would be
:ﬁplaced b'y [pr,-,bp,j] = [dp,-,d;(,,]—] = 6ij6p ps- This would follow closely
e quantization ?f the electromagnetic ﬁel(f using discrete sums over k
lt(;?dl;’lg to [a.k’\, O] = _6'\>\"6k,k' [Equation (2.55)]. Had we proceeded in
is fashion in our quantization of the Dirac field, we would have obtained

2
H = zp: ; Ep[b;f)ibpi + dI).'dpi - 1] (10.97)
and
2
Q= Ezlbt {(P)bpi — dI),'dpi +1] (10.98)

P i=1
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instead of (10.94) and (10.95). Obviously (10.96) would have been replaced

by the infinite sum over states 3= 3=,
To give a slightly more precise interpretation of the positron operators,

consider the linear momentum operator

3, m
P o= i [eartve= [ G5 TEe e - ol o)

= [ E S ) + dl (i) + (27 268 (0))
=1

@rPE
_ d3p m 2 1’ 1
N / (‘z?)?EPZ?["Av)bf(pHd;(p)d,-(pn, (10.99)

since [ dpp = 0, H(p)(p) = {(@)bi(p), and dl (P)ds(p) = a} (@)ds(p).
We conclude that di(p) and d! (p) are annihilation and creation operators
for positrons of four-momentum p, not, as might at first have been guessed
from hole theory, —p. Similarly the helicity index z on bi(p) and di(p)
corresponds to the same helicity for the electrons and positrons.®

Causality and Spin Statistics

Consider now the anticommutator {d)a(z),Ep (z')}. By analogy to the argu-
ment given in Section 10.3 for the Klein-Gordon field, this anticommutator
should vanish for spacelike intervals. A straightforward calculation yields

($al(2),Fp(a)} = i(if, + im)apA(e = ), (10.100)

where A(x — z') is the function appearing in equation (10.62) for the com-
mutator of the Klein-Gordon field. Thus the anticommutator for the Dirac
field does vanish if (z — z') is a spacelike interval.

As in the Klein—-Gordon case we have here an example of Pauli’s spin-
statistics theorem (1940): quantum fields for integer spin particles must be
quantized according to Bose—Einstein statistics, using commutators, whereas
fields for half-integer spin particles must be quantized according to Fermi-
Dirac statistics, using anticommautators. We can attempt to quantize the
Dirac field using commutators, and indeed we can obtain the correct Heisen-
berg equation of motion for ¢(z) by replacing the left side of (10.89) by a
commutator, but the commutator [#(z), ¥(z')] we obtain does not vanish
for spacelike intervals. Furthermore, having arrived at an expression of the

9See Sakurai (1976), p. 152.
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form (10.93) with the b’s and d’s being boson operators, the Hamiltonian
we end up with would not be bounded from below, i.e., there would be
no stable ground (vacuum) state, since there is no limit to the number of
bosons allowed in a given state. The Dirac vacuum would be unstable.

10.6 Dirac Vacuum in Field Theory
Let |0) denote the vacuum state of the Dirac field, such that

bi(p)[0) = di(p)I0) = 0 (10.101)
for all p and i. |0) is the state with no (positive-energy) electrons or
positrons. The state b:‘(p)|0) has one positive-energy electron of four-
mor'ngntum p and helicity ¢, and d; (p)|0) is a state with one positive-energy
positron of the same momentum and helicity.
' The vacuum expectation value of the Hamiltonian (10.94) [or (10.97)]
is

2 2
(0}H|0) = — 222(%15;,) = -222(%)\/;»2 +m2.  (10.102)

p i=1 P i=1

This corresponds to a zero-point energy —%\/pz + m?2 for each electron
state of energy Ep plus the zero-point energy of each positron state of the
same energy. We can write

1 1
(0]H|0) = — Z §hwk (electrons) — E -2-hwk (positrons), (10.103)
k. k.

where we write k for p, include %, and define hw; = vk? + m2. The
zero-point energy associated with electron (positron) states thus has the
magnitude %hwk familiar from the simple harmonic oscillator or the elec-
tromagnetic field, but the opposite sign. The minus sign in the zero-point
energy of the Dirac field is a consequence of the fermion character of the
particles it describes. Thus, whereas the zero-point energy of a boson os-

cillator arises from the term 1/2 in

aat +ata = [a, af] +ata+afa=24ta+1= 2(afa + %), (10.104)

that for a fermion oscillator is associated with the —1 in

bto—ddt = bto — [{d,at} — dtd) = 1o+ dtd — {d,dT} = bl 4+ dTa—1.

(10.105)
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This way of writing each term in the discrete-sum form of the Hamiltonian
(10.93) suggests that the zero-point energy is associated entirely with the
positron anticommutators; however, we can equally well write (10.105) as

|

%(bfb-bbf)+%(d1d—ddf) = %(b'fb+b’fb-1)+%(d’fd+dfd-1)

1 1
= @fb- )+ (dld - 3) (10.106)

in which case it is naturally attributable to equal zero-point energies of
the electron and positron states, as in (10.103). In any event, it should be
evident that the negative zero-point energy of the Dirac field, as opposed
to the positive zero-point energies of the electromagnetic or Klein-Gordon
fields, is a consequence of the fermion character of the Dirac particles.

The negativity of the energy of the Dirac vacuum is, of course, under-
standable from the hole picture. If all the negative-energy electron states
are filled in the Dirac sea, there must be a total energy Zp,i(_Ep)’ which
is (0| H|0).

The vacuum state |0) is evidently a physical vacuum with respect to
which energy or charge is measured. We can define a bare vacuum as the
state in which, in the language of hole theory, the negative-energy electron
states are all empty. Denoting the bare vacuum state by |0)bare, we have

IO) = Hpng?:ldi(P)lo)bare . (10107)

Note that, since d;(p) annihilates a positron, it in effect creates a negative-
energy electron, so that d;(p)|0)bare is a state with one negative-energy
electron. Henceforth the term vacuum will mean the physical vacuum.

As with the electromagnetic or Klein-Gordon fields, we can get rid of
the zero-point energy in the Hamiltonian by normal ordering:

d3p
(2m)?

2
H = m S 1 (i (p) + dl di(p). (10.108)
i=1

Similarly the normally ordered charge operator is

2
Q= [ 255> blue - d e (10.109)
i=1

and (0| : H : [0) = (0] : @ : |0) = 0.
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10.7 Casimir Effect for the Dirac Field

We have emphasized that the quantum field theory of massive particles is
a natural generalization of the quantum electromagnetic field theory con-
sidered in earlier chapters. Whereas the electromagnetic quantum field
theory describes the creation and annihilation of photons, the theory of
other quantum fields describes the creation and annihilation of other par-
ticles that may be fermions or bosons and may or may not have rest mass.
The four-component Dirac field describes creation and annihilation pro-
cesses involving two types of particles, electrons and positrons, with each
of which is associated two independent possible helicities.

A characteristic of all quantum fields is zero-point energy. Zero-point
energy can be eliminated from the Hamiltonian by normal ordering. As we
have seen in the case of the electromagnetic field, however, this does not
mean that zero-point ené(%z; is without physical consequence. When the
field interacts with itself or with something else — another field — there are
effects that are attributable to the zero-point energy and fluctuations of the
fields. One way to understand this is to work in the Heisenberg picture. In
this formalism the solution of a field equation must include a homogeneous,
“source-free” part, and this source-free field has nontrivial dynamical prop-
erties even if the field state is devoid of any real particles. And of course,
as stressed in earlier chapters, the source-free field contributes a zero-point
energy to the total energy, irrespective of the subtraction at the outset of
zero-point energy from the Hamiltonian.

Conceptually, the simplest electromagnetic vacuum effect is associated
with a mere change of boundary conditions from the idealized case of infinite
free space. We refer here, of course, to the Casimir effect — a force as a
consequence of spatial variations, due to boundaries, of zero-point energy.

If all quantum fields have zero-point energies, then evidently all quan-
tum fields must exhibit Casimir effects of this type. Let us now consider, as
an example, a Casimir effect associated with the Dirac field. As discussed
later, this example is relevant to the “MIT bag model” for hadrons.

In the case of the electromagnetic Casimir effect, the boundary con-
ditions on the field mode functions are well-known from classical electro-
magnetic theory. The first question that must be addressed in considering
Casimir effects for other quantum fields is: what are the boundary condi-
tions?

We will consider the Dirac field for two parallel plates at z = 0 and z = d,
the geometry assumed in the familiar electromagnetic Casimir effect. The
physical boundary condition we impose is that there is no particle current
through the walls: 7i - j(z). = 0 at z = 0 and z = d, where 7 is the unit



356 Introduction to Quantum Field Theory

vector normal to the surface, equal to z at z = 0 and —Z% at z = d. In
Lorentz covariant form for an arbitrary reference frame we have

nuj* =En,,'y“1/)=$n-7¢ =0. (10.110)

Now consider (in - )*:

. 1
(in-9)? = —-nuntY = —En,,n,,{'y",‘y"}
= —gunn’ =—[(n%)? -n’]=1, (10.111)
since (n®)2 — n? = —1 in the rest frame and is a Lorentz invariant. Thus

in - ¥ must have eigenvalues £1. Assume

in - y¥(z) = ¢¥(z) on the surfaces. (10.112)

Then in,j# = ¥ on the surfaces. But it follows from 1(10.112) that iy =
—% on the surfaces, so that in,j* = ign -y = —py = Y = 0 on the
surfaces, as required. In other words, we can satisfy (10.110) by assuming
the boundary condition (10.112) for ¢.

For reasons discussed later, it will suffice for our purposes to consider
the Dirac field for massless spin—1/2 particles.

The dependence of a single-particle wave function ¥(x,t) on = and y
will not be affected by the plates at z = 0 and d. The z-dependence for
an otherwise free particle between the plates will involve et'???  as in free
space. Consider a positive-energy wave function of the form (Chodos and
Thorn, 1974)

Y(x,t) = e~ iBtei(Pro+pay) P32 | o3¢~ 3% y(p) = e *Blg(x), (10.113)

where E = |p| for the massless particles under consideration, and where
u(p) is a positive-energy spinor for the massless Dirac equation. It is easy
to show that the boundary conditions (10.112),

i73¢(0) = ¢(0), i7’¢(d) = —¢(d), (10.114)
are satisfied by (10.113) if eiPsd = ¢=iPad or
nw
= = = e - 11
po=%7, n=135, (10.115)

The positive energy levels for a massless Dirac particle in the “box” under
consideration, subject to the assumed boundary conditions, are therefore

2.2

1/2
Ep=+pl+ml=lpl= [p§+p§+%;7] ,n=135,.. (10.116)
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. Consider now the total zero-point energy per unit area of the massless
Dirac field confined between the two plates:

2
_ n2g21Y/?
B0 = ~TYr=-Y Y [+
p =1 P1 n odd
dzP.L n2n2 1/2
- =23 /—[p'i+—]
n odd (27!')2 4d2
< 2rrdr n2g2? 1/2
- 2y ——[r2+—]
‘ ngd o (emz [ 4d?
1 Lo o]
= — Z/ dez? < (10.117)
n odd /n¥/2d

which of course is infinite. We define a “regularized” zero-point energy as

1 02 o0
E(d = —=1 —_ —azr
(d) ﬂ_il_rf(l) Doz E /M/Md:ce
n odd
—_ 1. 62 1 -nraf2d
= i s Xc;de /2. (10.118)
Now
5 et - fpan22]
n odd [ 2d]
1[2d 1 /7ma 7 m3as
= == - — —_— 4
2[7ra 6(2d)+360 Rd3 + O(a )],
(10.119)
so that
) . 2 2d P 75 ol :
E(d) = — — —_— e e 3
(d) = =5~ lim - [7ra2 57t 3e0eE T O )]. (10.120)

'.l‘he ﬁrst. term in brackets is an extensive, “volume energy” that may be
ignored in a calculation of the force between the plates. Thus (Johnson,

1975)
1 (Tx3 2 Tm2
Eld)=-—[— = )=
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which gives the force per unit area

OFE T2
= T 10.122
F(d) ad 960d4 ( )
or
Trhe
F(d)= ~9604% (10.123)

when the appropriate factors of k and c are restored.

This is 7/4 times the electromagnetic Casimir force per unit area be-
tween two parallel conducting plates separated by a distance d. Like the
electromagnetic Casimir force, the Casimir force associated with the vac-
wum Dirac field is attractive. This is a bit surprising, since the electro-
magnetic zero-point energy is positive, whereas the zero-point energy of
the Dirac field is negative. To trace the origin of this result, let us return
briefly to the zero-point energy per unit plate area of the electromagnetic
field between parallel conducting plates [equation (2.99)]:

oo 1/2
he 1 oo (-] 9 n27r2
E@d) = FE'Z/ dkx/ dk, [k§+ky+—7p—]
n=0 —oo —oo
=) 1/2
he oo 9 n27|.2
= mgl/o 2rrdr [r + - ]
hc b I/oo 2
I dez? 10.124
27"'12___% nx/d o ( )

where, as discussed in Section 2.7, the prime indicates that a 1/2 is to be
inserted for n = 0. Except for a factor —1/2, the replacement of d by 2d,
and the fact that the sum is over all the positive integers instead of only
the odd ones, this has the same form as (10.117), and can be evaluated
similarly:

hc.azlwe he . 0% 1 ro

27 a0 Ba? o &~ T Imabdata O 2d
he 2 1[2d 7a 1 733 4]
Mo 1L 2 40

47 amb 9o o [m +37 " mee TO@)

he w3 2 x2he
, 2y __ - 10.125
41r( 45d3) (8) 72043 ' ( )

which is the (electromagnetic) Casimir result, obtained in Chapters 2, 3,

Ed) =

and 7 by different methods. It should be clear, by comparing this derivation
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with that leading to (10.121), that the attractive result in the Dirac case
depends critically on the fact that only odd integers are summed over in
(10.117), i.e., on the choice of the boundary condition (10.112).

We noted in Section 8.10 that the electromagnetic Casimir force on a
spherical conducting shell turns out to be repulsive. The extension of the
Casimir effect for the Dirac vacuum to the case of a spherical shell likewise
turns out to be repulsive. Milton (1983) obtains

.02 .02h¢

) (10.126)

a

for a sphere of radius a.

These results are relevant to the so-called MIT bag model, in which
hadrons are regarded as bags containing freely moving quarks. Quark con-
finement implies that the quark currents through the walls of the bag are
zero. If a quark is confined to a region of dimension @ ~ 1 fm, on the order
of the radius of a typical hadron, then the quark mass m << 1/a and can
be neglected, as we have done in the foregoing.!® Assuming a hadron of
radius a composed of three quarks, the Casimir energy associated with the
confined quark field is three times the energy (10.126):
.06

~

Equark = (10.127)

However, this is not the only Casimir contribution to the bag energy; there
is also the Casimir energy associated with the field of eight gluons. The
gluon field is mathematically analogous to the electromagnetic field, and
contributes a Casimir energy E(a) = .09235/2a in the case of a sphere
(Section 8.10). For eight gluons, therefore,

8(.092)

Egluon = %a ’ (10.128)
and the total Casimir energy of the bag is
0.43
Ecas(a) = Equark(a) + Egluon(a) = T . (10129)

For a = 1 fm, this is about 85 MeV, i.e., about 9% of the proton mass
(Mostepanenko and Trunov, 1988). In practice the bag parameters are
adjusted to fit the mass spectra and magnetic moments of hadrons, and
quite good agreement can be obtained in this way (Johnson, 1975).

19Jf we choose to include the mass in equation (10.116), for instance, then Ep =
\/pg +p3+m? 4 n3x3/4d? > \/p? +p3 + n2x2/4d? for m << w/2d, i.e., for the
Compton radius of the particle much larger than the confinement distance d.
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As noted earlier, all quantum fields should exhibit Casimir effects. The
zero-point energy (10.42) of the nonrelativistic Schrodinger field implies
such a Casimir effect even in the nonrelativistic limit. However, for a
nonrelativistic particle in a box, the sum over all n as earlier means the
nonrelativistic approximation will break down when n/d~m,ie., when n
becomes as large as the wall separation d divided by the Compton wave-
length of the particle described by the field.

10.8 Maxwell Field Quantization Again

In Chapter 2 we quantized the electromagnetic field in the Coulomb gauge
by exploiting the formal equivalence of a field mode to a harmonic oscillator
and then quantizing the oscillator. We now return to electromagnetic field
quantization from the more general perspective of quantum fields.

First, however, we make another concession to convention (and prac-
ticality). In particle physics and quantum field theory it is conventional
to employ Heaviside-Lorentz units for the electromagnetic field. In these
units the source terms in the Maxwell equations are J and p rather that
473 and 47p, and the energy density of the field is (E +B?)/2 rather than
(E? + B2)/87. In order to make it easier for the reader who wishes to con-
sult more advanced treatises such as Itzkyson and Zuber (1980), we now
adopt the Heaviside-Lorentz system instead of the Gaussian system em-
ployed (somewhat conventionally) in our nonrelativistic theory of Chapters
1-8.

Recall that the vector potential A and the scalar potential ¢ of the
electromagnetic field are defined by writing B = ¥V x A, which then implies
E = —9A /8t —V¢. Then the Maxwell equation V xB = OE/8t+J implies

%A d¢
24 _ . sk RS
VPA- =7 -V (v A+ m) J, (10.130)
while V - E = p implies
V26 + %(V A)=—p. (10.131)

Since A is introduced only through its curl, we can always add the gradient
of a scalar function x(x, t) to A without changing anything, since VxVyx =
0. In order to keep E = —9A /8t — V¢ unaffected by this transformation we
must add —8x /8t to ¢. That is, the gauge transformation AP AH — 9%,
or

A— A =A+Vy, (10.132)
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, 9
b = b2 (10.133)

leave§ the physically measurable electric and magnetic fields invariant.

Different gauges correspond to different choices of A and ¢ that leave
E and B invariant. In the Coulomb gauge, for instance, we choose A and
¢ such that V - A = 0 and therefore

V24 = —p, (10.134)
A )
VIA - =7 =3+ V(% . (10.135)

We can also make a gauge transformation from any A, ¢ to A’, ¢’ satisfying
the Lorentz condition

o¢'
' —
V-A +W =0 (10.136)
by choosing x such that
*x d¢
2
Vx—-é_t?——-—(V.A-I-E)' (10.137)

If A’, ¢’ satisfy the Lorentz condition we are still free to make a “restricted

gauge transformation” of them with a gauge function x satisfying
8%y

2 X _ .

Véx — 52 = 0, (10.138)

S0 that.; the transformed potentials still satisfy the Lorentz condition. All

potentials related to A’, ¢’ by a gauge function satisfying (10.138) are said

to belong to the Lorentz gauge. In the Lorentz gauge, from (10.130) and

(10.131), we have :

%9 .

Vg — 57 =P (10.139)
02A
VA - =7 =—J, (10.140)

80 tl'lat the scalar and vector potentials are treated in a more symmetric
fashion than in the Coulomb gauge.

T.hfe charge and current densities p and J satisfy the charge conservation
condmon V -J + 8p/0t = 0 and define a four-vector J# = (p,J), in terms
of which charge conservation is expressed as

o5 = Oult = 0. (10.141)
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Lorentz covariance implies then that ¢ and A satisfying (10.139). and (10.140)
form a four-vector A# = (¢, A), in terms of which these equations may be

written in the manifestly covariant form

80" A” = J. (10.142)

In classical electromagnetic theory one defines the gauge-invariant, second-

rank antisymmetric field tensor

m
pov = QAL _OAT _ qugr g g
oz, Oz,
0 —E' —E® —E°
B! 0 -B% B (10.143)

= | e B 0o -B']|’
E3 -B* B! 0
in terms of which the inhomogeneous Maxwell equations V -E = p and
V x B = OE/8t + J may be written compactly in the covariant form

OuF* =J" . (10.144)
It is easily shown that
F,, F* = —2(E* - B?). (10.145)
The classical action for the electromagnetic field is
S = —/d"z [-}IF“"F,,,, + J,,A“]
- - / iz [%B”A"a,.A,, —SOMAD, A, + J”A"]
= /d‘zL, (10.146)
i.e., the Euler-Lagrange equation generalizing (10.16),
o s <_3L ) =0, (10.147)
0A, 0, A,

yields (10.144), as is easily verified. The latter equation is equ.ivalent to
(10.130) and (10.131), from which the set of four Maxwell equations for B
and B follow from the identifications B=V x A and E = —9A /8t — Vé.

It will be convenient to consider separately the quantization of the field
in the Coulomb and Lorentz gauges. Quantization in the Coulomb gauge

has already been done in Chapter 2; now we will do it differently.
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Coulomb Gauge

We are interested in quantizing the free field with Lagrangian density L =
—(1/4)F* F,, = (1/2)(E? — B2). In the Coulomb gauge, V- A = 0, we
have E = —9A /3t and B = V x A for the free field, for which we can take
¢, satisfying V2¢ = 0 everywhere, to vanish. Thus

L= % (%—?—)2 - %(v x A)Z, (10.148)
and the momentum conjugate to 4; (: =1,2,3) is
m=A; = —E; . (10.149)
The Hamiltonian is therefore
H= /d3z(7r.-A.~ )= %/d"z(Ez + B?). (10.150)

Since photons are bosons, it might seem as though we should now impose
the equal-time canonical commutation relation

[Ai(x,1), Ej(x,t)] = —i6;;6°(x — X'). (10.151)

However, this relation is inconsistent with the Coulomb-gauge condition
3;A; = 0. In order to satisfy the latter condition we take

[Ai(x,t), Ej(x', t)] = —i65 (x — x') (10.152)

instead of (10.151), where &3 (x) is the transverse delta function defined in
Section 4.4. Equation (10.152) is the same as equation (4.33), except for
the trivial factor of 47 associated with the Gaussian units used in obtain-
ing the latter. As discussed in Section 4.4, only the transverse electromag-
netic fields are quantized in the Coulomb gauge; the longitudinal field is
a c-number whose contribution to the Hamiltonian takes the form of in-
stantaneous Coulomb interactions among charged particles. Although the
quantization of the field in the Coulomb gauge is not manifestly Lorentz
covariant, the theory is nevertheless Lorentz invariant. In particular, the
commutation relations for the E and B fields do vanish at spacelike sepa-
rations, although (10.152) does not [see Section 2.8 and also the discussion
following equation (4.59)].

As in Chapter 2 we expand the vector potential in plane waves, now
using a continuous rather than discrete sum over plane-wave modes:

2
o 3l Ne~*= + al i, e <le(ic ), (10.153)
A=1

A= | G am &
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where wi = |k| and e(k, ), A = 1,2, are orthogonal linear polari?a.tion unit
vectors such that k-e(k,A) = 0. As in the case of the scalar Klem.—Gor-don
field, the factors 1/2w; are introduced in order to have a Lorentz-invariant
measure. From E(z) = —A(z) we obtain

[ L LS e+ _ ol (k, \)e* *le(k, ), (10.154
E(z) =1 Wié[a(k’A) ¢ (k, N)e*"le(k, A),  ( ’ )

and (10.152) implies

[a(k, 2), al (K, X)] = (27)*2we63(k — K')6rnr - (10.155)
The Hamiltonian (10.150) becomes ‘
&3k 1 }
H= [ oS —wial (k, Na(k, A 10.156)
5= [ G 2 el e e ) (

when normally ordered. Without normal ordering we incur the infinite

zero-point energy

(01H|0)

3 1 1
/ (—121;%5 Z -2—‘:;(.0)‘-2-(271')32(.01;63(0)
A

1
= & 3 - 10.157)
- 5(0)/“%:2%, (
which is the familiar 3"}, 3hws when a discrete sum over modes is adopted.!!

Lorentz Gauge

‘The Maxwell equations in the Lorentz gauge are manifestly covariant, i.e.,
their Lorentz covariance is obvious from their form. Th¥s suggests t:hat
the quantized field in the Lorentz gauge will involve manifestly covariant
equal-time commutators such as

[Au(x, 1), T (X', 1)] = igu 6% (x — ;c'). (10.158)

However, quantization in the Lorentz gauge is a fairly delicate matter, as
will be clear from the following observations concerning (10.158).

This commutator involves the temporal component Ap as well as A;,
i = 1,2,3. Whereas in the Coulomb gauge the scalar potential Ao is not

1183(k) = (1/2n)° fd3zc‘k'x — V/8x3 for k — 0, and (V/Bra)fd"k — Zk when
a discrete mode summation is employed as in earlier chapters. )
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quantized, (10.158) implies that now it is quantized, i.e., it is an operator.
Evidently we will have “scalar photons” as well as “transverse photons”
in the Lorentz gauge. Furthermore, since A is not generally transverse
in the Lorentz gauge, it will have a longitudinal component as well as a
transverse part. Thus it appears that we will have “longitudinal photons”
in addition to transverse and scalar photons in the Lorentz gauge. Since
they correspond to the gauge-dependent part of the vector potential,!? the
longitudinal photons, like the scalar photons, are “unphysical” and should
not appear in any measurable quantities. The basic difficulty here is that
in the Lorentz gauge we are “over-quantizing,” i.e., we are quantizing more
parts of the field than are physically required. In particular, the Lorentz
condition A%/8t+V-A = 8- A = 0 means that the scalar and longitudinal
parts of the field are not independent, and this constraint must be taken
into account.

The Lagrangian L = —(1/4)F#¥ F,,, implies that mo = 8L/8(8:A°) = 0,
which is inconsistent with (10.158). The standard remedy for this is to
consider a different Lagrangian, replacing L by

L = _%F;wpw - %(a - A)2. (10.159)

For this Lagrangian the momentum conjugate to A* is

oL

T = ———— = FH0 _ \g¥%(3 - A), 10.160
3G 9°(8- A) ( )
so that 7* = —E* as with the original Lagrangian, but

70 = —A(@-A) £0. (10.161)

The free-space Maxwell equations §,0#A” = 0 in the Lorentz gauge are
replaced by

8,0% A, — (1 — N), (0 - A) = 0. (10.162)

We will take the number A = 1, the so-called Feynman gauge for which
8,0#A, =0 and 7% = -9 - A .13 Now the Lorentz gauge condition on the
operator A, 8 - A = 0, would make 7® = 0, which would be inconsistent

12Recall the Helmholtz theorem that any vector field may be divided uniquely into
longitudinal and transverse parts (Appendix F), and that the transverse part of the
vector potential in particular is gauge invariant.

13The addition of the term —(A/2)(9 - A)? to the field Lagrangian density is not a
gauge transformation in the usual sense of a transformation of A# that leaves Maxwell’s
equations invariant. The original theory (based on the original Lagrangian) is recovered
by imposing the constraint (10.163), and Maxwell's equations are recovered only in terms
of expectation values. :
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with the desired, manifestly covariant commutator (10.158) and put us right
back where we started. We will instead impose the constraint

(¥|0- Alg) =0 (10.163)

on the field states |1). States satisfying this constraint will be considered
as “physical” states of the field. This approach to quantization in the
Lorentz gauge is the basis for the Gupta-Bleuler method of “indefinite
metric quantization,” part of which we now describe.14

As in earlier chapters we can write A(z) = A®)(z) + AC)(z), where
A¥)(z) and A(-)(z) are the positive- and negative-frequency parts of the
field, involving photon annihilation and creation operators, respectively, for
the free field. Now if 8 - A(*)|¢) = 0 then

(%10 - Alv) ($10 - AD|Y) + (19 - A7)

(%19 - AD|g) +[8 - AD )] |w)
0. (10.164)

i

In other words, we can satisfy the constraint (10.163) by taking
- AD|y) = 0. (10.165)
Since 8,0 A, = 0, we can again expand the field A,(z) in plane waves:

3 3
Au(z) = / z%’;gﬁzh(k,,\)e-‘k'x+a1(k,x)e*k~=]e“(k,,\). (10.166)
A=0

The sum over the polarization index!® A now involves four terms for each k
instead of two [compare with (10.153)] because we are now accomodating
scalar and longitudinal photons as well as transverse photons. We designate
the transverse components by A = 1,2, as in the Coulomb gauge. Thus

eo(k,1) = eo(k,2) = 0 (10.167)

and
kteu(k,1) = k*e,(k,2)=0, A=1,2. (10.168)

14 A full employment of the Gupta-Bleuler method involves a redefinition of the scalar
product in Hilbert space to allow for “pegative probabilities” (“indefinite metric”). This
is not the only possible approach to quantization in the Lorentz gauge. See Heitler
(1966), p. 89.

15 ) should not be confused with the parameter ) in (10.160), which we have taken to
be unity in the “Feynman gauge.”
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For any chosen reference frame we can take the four-vectors e(k,0) and
e(k, 3) to point along the time axis and the k direction, respectivel;'. Thus
eo(k,0) = 1, e;(k,0) = 0, i = 1,2,3, and ¢;(k,3) = k;/|kl|, eo(k,3) =
0. A = 0 and A = 3 correspond to “scalar” and “longitudinal’ ph:)tons
respectively. If k = |k|Z, for instance, then ’

(1) 0)
e(k:O) = 8 , 6(](,1): (1 ,
0
\ 0/ \ 0 )
0 (0)
e(k,2) = 1 | k3= 8 (10.169)
\ 0/ \ 1/

More generally e(k, A) - e(k, \') = g**'.
. .Nov-v as usual we can determine the commutation relations for the an-
nihilation and creation operators from the commutation relations for the

field. It is easily shown that the Lorentz covariant i .
commutat
(10.158) is satisfied if ation relation

[a(k, \), af (K, M)] = —(27)3 2w g™ 83(k — k') (10.170)
and {a(k, A), a(k’, A’)] = 0. The normally ordered Hamiltonian is
cH: = /da:c:[w“A“—L']:
1 3
= 3/ &= (Z[A? + (V4] - A2 - (VA")z) |
i=1

Bk 1 3 i
/ (27)° 2wy ¥ a (kw\)a(k,z\)—a"(k,O)a(k,O)l,
A=1

(10.171)

. The0 ;:ommutator (10.170) has the “wrong” sign for the scalar polariza-
tion (g = +1), as does the second term in the last line of (10.171). The
latter implies that the energy spectrum is unbounded from below. These

results pose no real problem, since we have not i i
, yet imposed the constraint
(10.165). From (10.166) it follows that .

5. AP@) = —i [LE Ly ;
AW () = —i nga(k,/\)[k~e(k,/\)]e""‘", (10.172)
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and the constraint (10.165) therefore means that the physical states of the
field are those for which

i[k - e(k, M]a(k, )|¥) = 0. (10.173)
A=0

Now k - e(k,A) = 0 for the transverse polarizations A = 1,2 [equation
(10.168)}). Furthermore k - e(k,0) = —k - e(k,3) [see (10.169)], so that
(10.173) reduces to

[a(k, 3) — a(k, 0)][¢) = 0. (10.174)

Thus the physical states of the field are those for which 1.:he unphysical
scalar and longitudinal photons cancel each other’s effects in the sense of

(10.174).

Ghosts

The procedure just described allows Maxwell’s equations in the Lorentz
gauge to be satisfied in terms of expectation values. Thfa Lorentz gauge
condition 8 - A = 0 is itself satisfied only as an expectation value., as in-
dicated by (10.164). In addition to the physical states |¢) constra.med by
(10.174), the Hilbert space for the field contains ghost states. Consider, for
instance, the state with one scalar photon (Itzykson and Zuber, 1980):

|61) = (_g;%mi_k f(k)al (k,0)j0) . (10.175)

Here |0) is the bare vacuum state such that a(k, A)|0.) =0, and a (.iistribu-
tion f(k) is introduced in order that |¢1) have a finite norm. This norm,
however, is negative as a consequence of (10.170):

3 1 2
(bilor) = (—‘%(2—“;) ()2 (0la(k, 0)af K, 0)[0)

ek 1
= - -(-2—7r3§—2-u)—k|f(k)|2. (10.176)

The negative norm is a reflection of the unphysical nature of the scalar
photons and the ghost state |¢1).

The ghost states, however, pose no problems so long as we remember to
impose the constraint (10.174). Suppose we write the physm.a.l states |¢) of
the field in the form |¢7)]0), where |¢1) involves only physical, transverse
photons and |¢) involves unphysical, scalar and longitudinal photons: (Tl_us
can always be done because the constraint is linear.) Then (10.174) implies
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[a(k, 3) —a(k, 0)]|¢) = 0. For the expectation value of the normally ordered
Hamiltonian (10.171) we have

3 3
(Wl H : [9) = (‘217')“32—:):% S (wrlatk, Natl, igr) ,  (10.177)
A=0

where the sum over A = 3 and 4 vanishes due to (10.174). This expectation
value is positive-definite, as required, as is the norm of all physical states
|). The norm of the ghost state |¢,), by contrast, is negative because it
has no longitudinal photon to balance the scalar photon, i.e., it does not
satisfy the constraint (10.174).

From a physical standpoint, of course, there is no difference between
the Coulomb and Lorentz gauges. Nature cares little about scalar and
longitudinal photons, ghost states, or different gauges — although it does
appear to insist that our theories be gauge—invariant. For the physicist there
is, however, an advantage to working in the Lorentz gauge: the equations
are manifestly covariant and, in particular, the Lorentz-gauge propagator
is neater in form than the Coulomb-gauge propagator, as we shall see in
the following section.

10.9 Propagators

We have already noted that the state ¢t (2)|0) describes a particle at =
(x,t). The probability amplitude for the particle to propagate from z to z’
is therefore the scalar product of 1/)T(x)|0) and ! (z')}0): (1/)T (z’)]O))Jf X
1/)t(1t)|0) = (0|¢(:c')1/)t(z)|0). This can be interpreted as the creation of a
particle at z out of the vacuum, followed by the annihilation of the particle
at z’. Causality demands that ¢’ > ¢ in order for this interpretation to
make sense. Thus we replace (0|¢(:c')1/)1(:c)|0) by 6(t' — t)(OW)(:BI)’(ﬁt (x)]0),
where (1’ —t) is the unit step function, and interpret this as the probability
amplitude for a particle described by the quantized field ¥(z) to propagate
from z to z’. Except for a possible phase factor of modulus unity, we call
this amplitude a propagator.

Consider first the example of the nonrelativistic Schrodinger field. From
(10.1), with the simple generalization of the formalism of Section 10.2 to
three spatial dimensions, we have

8(t' — )0l (x', )1 (x,1)[0)

= 0t = 1) 3" 3" (Olamaf[0)¢m(x')g5 (x)e Ent=Ent)
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= 6'-1), bn(x' )1 (x)e— =) (10.178)
n
Since §(t) = 8(t), we obtain by differentiation

2ot ool vt x,010)]

—iEa(t'-1)

= §(t' — )0, )t (%, 1)[0) — i0(t' =) Y Endba(x)gn(x)e

= 8 —1) Y a0 — G — 1) X T gl )5 (0)e P,
" " (10.179)
or

[?a% + iH(x’)] ot ) (0w(x', ')l (x,£)[0) = 63(x' ~x)8(t'~1), (10.180)

where we have employed the completeness relation ), ¢n (x)n(x) = 63(x'=
x) for the eigenfunctions of the Schrodinger equation.'® We define the prop-

agator

G, 'y x, 1) = —if(t' — )(Ol(x, )% (x,)[0) , (10.181)
so that
[igat—, - H(x’)] G(x',t';x,t) = 63(x' — x)6(t' —t) . (10.182)

In other words, the propagator is a Green function for the (time-dependent)
Schrodinger equation, subject to the boundary condition that G(x',t';x,t) =
Ofort' <t.

For a free particle with H(x') = —V%,, the propagator Go(x',t'; x,1)
may be evaluated explicitly using

1 3 ip(X'-X 1 oo —iw(t'=t)
63(x' - X)é(tl - t) = (5-7;) /dape p-(x ) (Er-) L dwe
(10.183)

16 Completeness of the ¢n implies f(x) = E" cnén(x) for any function f(x). Then
cn = [d3z' f(x')oh(x’) and f(x) = [ B2 1(x') T, #n(x')én(x), which implics
3, #n () (x) = 6% (x - x).
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and writing Gy(x', x,1) = (1/2)"  d%p [, duogo(p, )P X'~) x
e~#('=")_ Then it follows from (10.182) and a contour integration that

m

3/2 . , ,
m] XL Dg(¢ — 1) (10.184)

Go(x',t';x,t) = —i [
for the case of a free particle.

The Schrodinger equation for a particle subject to an interaction po-
tential V(x,t) is [i8/8t + VZ]¥(x,t) = V(x,t)¥(x,t) . From (10.182) it
follows that

P(x',t') = 1/)o(x',t')+/d3:c /_: dtGo(x', t';x, 1)V (x, t)¥(x,t), (10.185)

where ¥,(x’,t') is a solution of the Schrédinger equation with V =0, i.e.,
in the “remote past,” before the interaction is “on.” The formal solution
(10.185) can be iterated to develop a perturbation expansion for ¥(x’,'):

YL E) = po(x, 1)+ / Pz / dGo (X, ¥'; %, )V (%, Yo (x, 1)

+/d3:cl/ds:cz/dtl/dtzGo(x',t';x,t)V(xl,tl)

X Go(xl,tl;X2,t2)V(XQ,t2)1/)o(X2,t2) + ... (10186)

Of course all this is well-known, and we do not need quantum field the-
ory, starting from the amplitude (O|¢(x’,t’)11)f (x,1)]0), to derive (10.184)—
(10.186). Things become more interesting when we consider the propagator
for a relativistic quantum field. We now turn to the propagators for the
Klein—Gordon, Dirac, and electromagnetic fields. Our discussion will be
rather formal and terse, as our principal aim is to evaluate these propaga-
tors for use later on.

Klein—Gordon Propagator

Based on (10.181), it would seem natural to define the Klein-Gordon propa-
gator as G(z', ) = —if(t' —-t)(0|¢(:c’)¢f(:c)|0), where () is the quantized
Klein-Gordon field and |0} is its vacuum state. However, (0l¥(z")t (z)]0)
is not the total amplitude by which a unit charge, say, can be propagated
from z to z’. For in addition to creating a particle at z out of the vacuum
and annihilating it at z/, we can accomplish the same transport of charge
from z to z’ by creating an antiparticle at z’ and annihilating it at z. The
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amplitude for the latter process is (0|¢1(z)¢(z' )|0). This amplitude, II.lu!-
tiplied by 8(t —t') to ensure that the antiparticle at z’ is created before it is

annihilated at z, must be added to —if(t' — t)(0|‘1/)(:c')1/)f (:c)|0) in order to
get the total probability amplitude for transporting a unit of charge from

z to . Thus
iG(', 2) = 0 — (0l¥(= ! (2)10) + 6 — £)(01¥T (2)4(2")10)- (10.18)
We define the time-ordering operator T by

Tyl () = wewl() it <t
= ylE)w@E) ift >t (10.188)

T simply orders the operators according to the order of th?ir time argu-
ments, later times appearing to the left of earlier times. Using T', we can

write (10.187) more compactly as
iG(z', z) = (0|T%! (z)¥(z")10). (10.189)

To evaluate G(z',z) we use the plane-wave expansions (%975) for the
charged scalar field, together with the commutators (10.78):

dk 1 —ik-(z' - N, ik-(z'—x)
iG(.‘L'I, 12) = /(-2?)5_2-E_‘k [O(t’ - t)e ik (s I) + G(t -1 )C ]

1L [k 1] / ® AWk (x - X) pmi(Baw)(t' )
omi | (2m)32E) |J oo w — i€

N /°° dw e_;k.(x'_x>e.-(m—w)(t'—t)]

oo W — 1€
1 Bk 1 [ g e—iv(t'—1) ik (X' = X)
= Er'i/_(w)fﬁ; L/_w Vg%
0 gmiy(t' =)k (X'-X)
* ~/—oo dy Ex+y-—- 1€
= 1 _dﬂc_ fi_k_oe-i[ko(t’—t)_k.(xl_x)]_l_

1 1 ]
X [Ek—ko-ic+Ek+ko—ie

T oo Wt < Yl .
17\We use the representation 8(t) = (1/2mi)lim._ o+ f_w dwe'“t(w—1¢)™ of the unit

step function.

Propagators 373
— _,/ qu e-—ik-(z'—-:) 1
(2m)* EZ — k2 —ie
4f  o—ik-(z'-z)
= i 25 . (10.190)

(2m)tm? — k2 —ic ’

since B2 — kZ = k2 + m? — k2 = m? — k- k = m? — k?; here the limit
€ — 0% is'implicit. Thus the Klein~Gordon propagator has the manifestly
covariant form

dk e—ik~(:c'-—a:)

' - ‘N
G, 2)=G(s' - =) = (2m)4 k2 —m2 4 4e

(10.191)

It is obvious from this form that G(z’ — z) is a Green function for the
Klein-Gordon equation:

1 4 . 1
8,8* +m>G(z' —z) = - dke"k'("’)z—éax'—xét'——t
g (2m)*
= =64z’ —z). (10.192)

The particular Green function (10.191) satisfies (10.192) and the boundary
condition that it is the amplitude for a particle to propagate from z’ to «
when t' > ¢, and for an antiparticle to propagate from z’ to z when ¢ < ¢.
Dirac Propagator
The Dirac propagator Sg(z’, ) is defined by

iSr(«,2) = (OIT¥(=")P(z)I0) , (10.193)
where the time-ordering operator T in the case of fermions is defined by

Ty(=')¢(x) (e )(z) it >t
= —Y(@)P() if¢' <t (10.194)

The minus sign appears because fermion amplitudes are antisymmetric
under an interchange of coordinates. Without the minus sign we would
have T[Y(z')(x) + ¥(x)w(a')] = 2(c"YP(@)O(t — 1) + 2(2)p(")o(t — ¥'),
which would be inconsistent with the anticommutation relation ¢(z')¢(z)+

V(z)y(z') = {¢(z'), ¥(z)} = 0. Thus
iSp(z',z) = 6(t' — t)(0l¢(=")¥(x)|0) — 6(t — t')(0[(z)y(")|0). (10.195)

This is quite analogous to (10.187) for the spin—0 field: the amplitude
to transport a charge from z to z’ is the amplitude to create a charged
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particle at r and annihilate it at z’, minus the amplitude to create an
(oppositely charged) antiparticle at z' and annihilate it at z, with the
appropriate boundary conditions on the time ordering for these events.
Note that Sp(z’,z) is a 4 x 4 matrix; we can write (10.193) as

iSp(z', 2)ap = (0|TVa(z')¥5(2)]0). (10.196)

Sp(z',z) can be evaluated in basically the same way as the Klein—
Gordon propagator. From the plane-wave expansions (10.90) and (10.91),
and the spinor identities (9.33) and (9.34), we obtain straightforwardly the
result

iSp(s' —2) = (‘2’—”’)’5% (o0t — t)(p + m)e? =
= ot — t)(f = m)e” ' =9] . (10.197)

Using again the integral representation of the unit step function 4, and a
change of integration variable as in (10.190), we get the manifestly covariant
result

d4p o (' f +m
r— = L P —ip(a’-z) _L T
Sr(z’ ~2) (27r)46 p? —m? +ie
d'p _ip(s'-2)

- /WC Sr(p) , (10.198)
where the Fourier transform

_ F+m _ 1

Sr(p) = Fmi ik S fomyic (10.199)

The latter form allows us to see easily that
(i@ — m)Sp(z’' — ) = 8*(z' — =), (10.200)

i.e., Sp(z' — z) is a Green function for the Dirac equation. The subscript
F stands for Feynman, and S is often called the Feynman propagator or
the electron propagator. Sakurai (1976) refers to S as “one of the most
important functions in twentieth-century physics.” We shall defer further
discussion of this propagator to the following chapter.
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Photon Propagator: Coulomb Gauge

It should by now be obvious how to define the propagator for the Maxwell
four-potential field A(z):!®

Dy (2',z) = —i(0|T Au(z') Ay (2)]0). (10.201)

Dy, (z',z) will depend on the choice of gauge. In the Coulomb gauge
where the vector potential is transverse (V - A = 0), we denote D, (z’, z),
by ny (z',z). The Coulomb-gauge photon propagator may be evaluated
following the same procedure as for the Klein-Gordon and Dirac propa-
gators. Using the plane-wave expansion (10.153) for the Coulomb-gauge
vector potential A;,i =1,2,3, we easily calculate

dik e—ik(z'-z) 2
(27)% k2 + e D ik, Mej(k, 2) (10.202)
A=1

Dg(z:', z) =

fori,j =1,2,3. To evaluate the sum over A, note that, since k- e(k, A)=0,
we can write any vector a as

2
a=(a-kk/k®+ ) [a-e(k ))e(k, ) (10.203)
A=1
or
3 3 2
a; = Zajk,'k‘j/kz + Z E ajej(k, A)e,—(k, A)
ji=1 j=1a=1
3 kik; 2
= aj Ti’i + ) ei(k, Mej(k, ,\)] , (10.204)
ji=1 A=1
from which
2 kik;
> ek, Aej(k, A) = &; — = (10.205)
A=1
and
4 —ik-(z'-x
DS —z) = [AEe¢ “9 (5, - Kiks
(27)* k24ie 'Y k2
_ d4k —ik-(z'-2z C
= | @ == pE (k) , (10.206)

18
The' use of the symbol D for the photon propagator, like Sg for the electron prop-
:;5ator,d 1;) comn;onnﬁut not universal in the literature. Often the photon propagatar is
denoted Dy and called the Feynman propagator for electromagnetic radiats j
et Dol 04) g radiation (Bjorken
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where
1 kik;
D§ (k) = e (6,-,- - ) (10.207)

It follows from (10.206) that
(-22— - V”) D§(z'—z) = 8,8"Dfj(z' )

a2
d*k kik; —ik-(z'~7)
- - (-52)e

dk kikj \ ik.(x'-x
= o0 =) [ gy (80 - ) >
= —§(t' — )85 (x' —x), (10.208)

where 635 (x’ —x) is the transverse delta function defined by equation (4.34).
Thus DC(.’B — z) is a Green function for the transverse part of the vector
potential To see this explicitly, consider the equation (10.135) for the
Coulomb-gauge vector potential. From the continuity equation V‘ J+
dp/dt = 0 that follows from the Maxwell equations, and the solution of
equation (10.134) for the scalar potential in the Coulomb gauge, we have

8¢ 1 / s ,0p(x' 1)/t
- = 34V [P
3+9 (%) * ¥ -]
13t
= -J——v/d3 A (x, )
x'|
= -J+M=-3t, (10.209)
so that A(x,1) satisfies
62
2494 _ _ju 10.210
VA -2 ( )

and the Green function for this equation satisfies (10.208). .

The simplest way to calculate D§y(z’ — z) is to use the fact that it is
a Green function for the Poisson equation satisfied by Ao(z) = ¢(z) in the
Coulomb gauge. Thus V'2D§,(z’ — ) = —83(x’ — x), so that

1
D§y(k) = o (10.211)

and

—ik-(z'— ik-(x/—x)
dtk e—t* (z'-%) , &3k €
Doco(z’ — z) = / (27]’)4 k2 = 6(t t)/ (2 )3 k’
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skrcoséd

= 6(t'—t)82—:§/ dkk’/ d0sin 6%

T dksmkr
_ s —1) _ o(t' - 1)
- 47|'T - 41r|x’ _ xl . (10212)

It is easily seen, from the definition of the propagator, that the remaining
components D (z’,z) and D§(z',z), i = 1,2,3, all vanish.

The part of the photon propagator assoc1ated with the scalar potential,

(:c - z), obvnously corresponds to nonretarded, instantaneous propa-
gatlon from z to z’. Instantaneous interactions assoclated with the scalar
potential in the Coulomb gauge are cancelled by interactions associated
with the transverse vector potential, as we showed in Section 4.6 for the
example of the dipole-dipole interaction.

Photon Propagator: Lorentz Gauge

Using the plane-wave expansion (10.166) for A,(z) in the Lorentz gauge,
we obtain from (10.201), in the now familiar way, the manifestly covariant
expression

d*k e—ik-(z’—z)

' - _
D" = 2) Inv | @) K rie
d*k —ik-(z'-7)
(2_”);6 Duu(k), (10213)
with 0
— __Yuv
Du(k) = -2 - (10.214)

Note that D, (¢’ — z) is —g,, times the m — 0 limit of the Klein-Gordon
propagator.

10.10 Remarks

We noted in Chapters 2 and 3 that, although the electromagnetic field was
first quantized by Born, Heisenberg, and Jordan in 1926, the first impor-
tant application of quantum field theory — to spontaneous emission —
was made by Dirac in 1927. Dirac showed that the quantum theory of the
electromagnetic field could deal with the creation and annihilation of pho-
tons. Soon after that Jordan and Wigner (1928), and then Fermi (1929)
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and Heisenberg and Pauli (1929, 1930), showed that particles of finite mass
could also be understood as field quanta, just as photons are quanta of the
electromagnetic field. In other words, by around 1930 the idea of quan-
tized fields beyond electromagnetism had already been established. Indeed
Fermi (1934) employed ideas of quantum field theory in his theory of the
beta decay of nuclei: the electron associated with beta decay, according
to Fermi, is created through the interaction of fields, analogous to the cre-
ation of a photon via the interaction between an atom and the quantized
electromagnetic field.

However, the belief that quantum fields are the “essential reality” de-
clined during the 1930s and 1940s, although Pauli’s spin-statistics theorem
(1940) was certainly a major triumph of quantum field theory. This de-
cline in popularity began with the calculation of Oppenheimer (1930) in
which the interaction of an atomic electron with the quantized electromag-
netic field produced an infinite shift in the electron’s energy. The Lamb—
Retherford experiments in the late 1940s compelled physicists to finally
confront such infinities, and the calculation of the Lamb shift and other
QED effects was successfully done by the method of renormalization, as
described in Chapter 3 in connection with the nonrelativistic theory and
in the following chapter for the correctly relativistic theory. With this ex-
tremely successful calculational tool, quantum fields could again be claimed
to be the “essential reality” of the universe.

In this chapter we have shown, in relatively very simple terms, how the
theory of quantized fields leads to creation and annihilation operators for
material particles, in much the same way that QED involves creation and
annihilation operators for photons. We have emphasized that all quantum
fields have zero-point energy and nontrivial vacuum states. We showed,
for instance, that there is a Casimir effect associated with the Dirac field
of which electrons and positrons are the quanta. According to quantum
field theory the vacuum is a complicated state of affairs involving virtual
photons, electrons, positrons, quarks, gluonms, ... ; there is a quantized
field, with vacuum fluctuations, associated with every kind of fundamental
particle. In calculations we must take into account the myriad possibilities
for the creation of particles out of the vacuum and their annihilation. In the
following two chapters, and particularly in Chapter 12, we discuss how such
calculations are done in the “best theory we have,” QED. In particular,
we will show how the sorts of calculations done in previous chapters are
modified in relativistic QED.
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Chapter 11

Self-Energies and
Renormalization

No progress was made for 20 years. Then a development came,
initiated by Lamb’s discovery and explanation of the Lamb shift,
which fundamentally changed the character of theoretical physics. It
involved setting up rules for discarding ... infinities ...

— P. A. M. Dirac (1989)

11.1 Introduction

The interactions of electrons and positrons with the electromagnetic field
are treated in quantum field theory through the coupling of the quantized
Dirac and Maxwell fields. The resulting theory of relativistic quantum elec-
trodynamics is the most accurately tested theory in the history of physics.

For nearly half a century the most convenient and widespread formula-
tion of QED has involved covariant perturbation theory in which terms in
a perturbation expansion correspond to Feynman diagrams. This formu-
lation is the subject of the following chapter. In this chapter we take an
old-fashioned approach to some fundamentally important aspects of QED:
the electron self-energy, renormalization, the Lamb shift, and vacuum po-
larization. There are two compelling reasons for such an approach. First,
the results obtained in this way lend themselves to a more direct physi-
cal interpretation than is possible without some working familiarity with
the more powerful methods of covariant perturbation theory. Second, the
power of the methods described in the following chapter can be better ap-
preciated when they are compared with the older, noncovariant methods.

IR |
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There is yet another, historical reason for devoting some attention to the
older ways: the first correct results for the Lamb shift, for instance, were
obtained by old-fashioned perturbation theory. The discussion here in fact
relies heavily on those early efforts (Kroll and Lamb, 1949; French and

Weisskopf, 1949).

11.2 Coupled Dirac and Maxwell Fields
The Lagrangian density for the Dirac field is given by equation (10.85) as
Lp = P(e)(ig — m)¥(z). (11.1)
For the Maxwell field we have, from (10.146),
lm = -%F“”F,J,, = %(E2 — B?). (11.2)

The contribution to the Lagrangian density arising from the coupling of the
electromagnetic field to a current density j# can also be read from (10.146):

Lom(z) = —eju(z)A% (). (11.3)

Using the current density j* = epy*1 for the Dirac field, we can write this
as

Lom(z) = —ep(z)r,¥(z) A" (2), (11.4)

so that the QED Lagrangian density for the coupled Dirac and Maxwell
fields is

L(z) = LD(I) <+ LM(:C) + LDM(:!:)
TP —m) + S(E - BY) = Pyupat . (119)

il

In the Coulomb gauge the vector potential A is transverse, ie,V-A=
0. The time component A°(z) of A#(z) in this gauge is nondynamical and
can be eliminated by solving for it in terms of the charge density p(x,t) as
in equation (4.15):

o e e [ PED) e [ e TG 1)
A(x,t)._¢(x,t)__47r/d:cIx_x,|_41r/d:c =]

(11.6)
in Heaviside—Lorentz units. The fact that A°(x,t) is not retarded in the
Coulomb gauge is not a problem because, as discussed in Section 4.6, it
is only the total field, longitudinal plus transverse, that must be retarded.
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In the Cot‘xlomb gauge the longitudinal and transverse parts of the electric
field are given respectively by

El(x,t) = —vA°(x,1) (11.7)
and

Et(x,t) = —A(x,t), (11.8)
and the latter has an unretarded part that exactly cancels the unretarded

contribution Ell to the complete electric field E = El + EX (Section 4.6).

From (11.5) we obtain the momenta conjugate to the fields A and ¢ in
the Coulomb gauge:

oL ,

5(—67,') = —E,' = —V;Ao +A, y (119)
oL . t
Fri Pl . (11.10)

The Hamiltonian following from the Lagrangian density (11.5) is therefore
found from the prescription given in Chapter 10 to be

H = /daz[¢f(—ia -V + fm)y + %(EZ + B?)
+ E - VAo + ey, pA*]. (11.11)
Now by partial integration

/da:cE VA = —/d%(v ‘E)Ap = —e/dsxp(x,t)Ao(x,t), (11.12)

which exactly cancels the term ey, A° = e 1/’* A = oA in the i
grand of (11.11). Thus YAo = epAo in the inte-

_ . 1 _ .
H= /d% [¢T(—za -V 4 Bm)y + —2-(E2 +B%) + e¢7.-¢A‘] ,  (11.13)
where the repeated index i in the last term implies a summation over the

spatial components i = 1,2, 3.
We can further simplify H using

/d":cEz = /d%(E"2 +Et2 4 2El. EY). (11.14)
Note first that

/dszE“ ‘Et = /d-“zVAo ‘A= —/d3on(V -A)=0. (11.15)
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Furthermore

/ BzEN? = / d3zV Ay VA= — / d3z AV Ay

e? 3 ,p(x,t)p(x’,t)
e/daonpz-lG/dsz/dz——————h_xll |
(11.16)

il

from (11.6). Therefore
H = / dz [1/;1(—1'(:-V+ﬂm)¢+l(EJ'2+B2)+e$7.-¢A"]
P )p(x', 1) (11.17)
+ -—/d3 /d3 4

T -x]
We rewrite this, using Py A’ = —¢1fy - Ay = —ypla- Ay, as
H = /d’% [¢’f(—ia .V + Bm) + l(E2 +BY) —epla A¢]
/d3 /d3 2P, 1) (11.18)

T -l

with the understanding that E and A are transverse field operators. They
satisfy the equal-time commutation relations (Section 10.8)

[Ai(x, 1), B (x, 1)] = —i&; (x — X), (11.19)
[Ai(x, 1), A;(x', )] = [Ei(x,1), B (x', )] = 0, (11.20)

whereas the Dirac field operators satisfy the equal-time anticommutation
relations
(Balx, 1), Yp(x', )} = Gapb(x =), (11.21)
{$a(x,t), ¥s(x, 1)} = 0. (11.22)

Commutators of Dirac field operators Yo with Maxwell field operators A;
and A; vanish, e.g.,

[Yal(x,t), Ai(x',1)] = 0. (11.23)
It follows from (11.6) and (11.21), however, that

e Ya(x,t
{$alx,1), Ao, )} = o= Tx (xx,} . (11.24)
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The Hamiltonian (11.18) is the relativistic generalization of the nonrel-
ativistic Hamiltonian (4.17) in the Coulomb gauge. The part of the Hamil-
tonian attributable to the transverse field, involving the energy density pro-
portional to E12 4+ B2, has the same form, as does the part associated with
the instantaneous Coulomb interactions among the charged particles. (In
the nonrelativistic Hamiltonian (4.17) the Coulomb interactions are written
explicitly in the form appropriate for classical point particles.) The main
difference between the relativistic and nonrelativistic Hamiltonians lies in
the treatment of the fermion particle dynamics. The nonrelativistic kinetic
energy operator p2/2m is replaced in the second-quantized relativistic the-
ory by a Hamiltonian density ¥(a - p + #m)y, while the interaction term
—(e/mc)A - p + (e2/2mc®)A? is replaced by the density ey Av in relativis-
tic units and notation. As in classical theory — or actually as a result of
what we know classically — we are using different particle dynamics in the
relativistic case, whereas the electromagnetic field is treated in essentially
the same way as in nonrelativistic theory. Of course this difference may be
traced back to purely classical theory, where the Maxwell equations have
the correct transformation properties under Lorentz transformations but
the Newton equations do not.

In obtaining the Hamiltonian H given by (11.18) we have assumed, in
(11.16), that A is the electrostatic field due to the charge density ep =
eap":p. More generally there will be an erternal electrostatic field Ag**
giving an additional contribution ey?$AS*t = ept At = ytVy to the
Hamiltonian density. Then

/d% [#1(@ 0+ pm+ Vvt 3@ + 87 - evla v
/d3 /d3 "’("lxt)”sfl ) (11.25)

For a bound electron, for instance, V would be the binding potential, such
as the Coulomb potential due to the proton in the hydrogen atom.

11.3 Self-Energy: The Old-Fashioned Way

We consider now, based on the second-quantized relativistic Hamiltonian
(11.25), the energy associated with the coupling of an electron to the vac-

uum electromagnetic field. We refer to this energy as the “self-energy” of
the electron.
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First we write the Dirac field 1(x,t) a little differently. The expression
(10.90) gives 1(x, ) as a continuous sum of free-electron plane-wave states.
More generally we will want to express ¥(x,t) in terms of one-particle
eigenfunctions that differ from u’(p) and v*(p), and which may correspond
to discrete as well as continuous spectra. Thus we now replace (10.90) and
(10.91) by ‘

Y(x,t) =) [b,,¢,,+(x)e—‘E~‘ + d{¢k_(x)e‘E~'] , (11.26)
k

wx=3 [514,; LB 4 i (x)em B (11.27)
k

Here ¢¢+(x) and - (x) are four-component positive- and negative-energy
eigenfunctions replacing the plane-wave eigenfunctions u(p)e’P* and v(p)
xe~PX respectively. We choose here, in order to follow the older literature
more closely, to omit the covariant normalization factors m/ E} included in
equations (10.90) and (10.91). Thus the normalization of the Dirac spinors
will differ from the choice made in Chapter 9, a minor difference that will
be noted later, when it is important. The formulas (11.26) and (11.27)
generalize the plane-wave expansions (10.90) and (10.91), and in writing
them we allow for the possibility that at least some of the ¢y (x) and
éi—(x) are bound-state eigenfunctions, as already noted.

We consider first the expectation value of the last term in the Hamil-
tonian (11.18) for the state in which there is one electron described by the
eigenfunction ¢4(x). From the fact that p(x,t) = ¢»1(x,t)¢(x,t) we see
that the expectation value of this operator will involve expectation values

of products of four annihilation and creation operators such as blbtb,t b,
blbld,d:[,., etc. For the state of interest the only nonvanishing contribu-
tions come from (dydid,d}) = (blbadsal) = (b6l = (8lb,blbs) =

(dadlblba) = 1, where o, p designate negative-energy eigenfunctions [e.g.,
$o—(x)] and r designates a positive-energy eigenfunction. Thus

il o] A

= E Z Aacrpp + Z Aaaad + E ; AON‘U
o p 4 o r#a

+ Z Asrra + ZAaaaa

r
E Z Aoopp + 2 Z Aaaaﬂ
a P 4

(a|Hs]a)

it
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+D0D Aorra + Y Aarra (11.28)
o r#a r
where

&2
Attmn = / &z / B2 |x — x| LX) be(X)br (X )bn(x').  (11.29)
We argue that the physically significant electrostatic energy is the difference
between (a|Hs|a) and (vac|Hg|vac), where |vac) is the vacuum state of no

electrons, positrons, or photons. The latter expectation value is easily seen
to be given by

(vaclHs|vac) =Y~ Avopp+ 3. D Avrra (11.30)
a P o r

so that

Ws

il

(a|Hs|a) — (vac|Hg|vac)

2 E Aaaaa + Z Aarra - Z Aaaaa
o r 4

2 Awaoo + Y tAanna , (11.31)

where the upper or lower sign in the second term is used depending on
whether n is a positive- or negative-energy state, respectively.

It is convenient to define §; = E;/|E;| = +1 for positive-energy states
and —1 for negative-energy states. In this notation,

Ws = (1-6;)Aaaj; +_ 6 Asjja (11.32)
j j

where j denotes any state, regardless of the sign of the energy.

The interaction —e [ d3zyfa- Ay in (11.18) has expectation value zero
for the state in which there is an electron in state a and there are no
positrons or photons; in fact its expectation value vanishes for any state
of definite photon number. However, this term contributes to an energy
shift when taken to second order in perturbation theory. We denote this
second-order “dynamical” contribution by AE,. To evaluate AE, we first
write out the interaction more explicitly:

Hie = -e/dsup*a-mp
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B 1< N i
o e WE;;ZEZ[Cm+t+(k)bmbt

A=1 m (¢
+ CApp-(W)bhd] + Oy (K)dmde
+CA o (W)dmd]| ot (k, 0), (11.33)
where
Chiep(k) = / Bz}, (x)a .ek)‘¢¢+(x)e—ik'x etc., (11.34)

and we have used (11.26), (11.27), and the expansion (10.153) for the
Coulomb-gauge vector potential. In writing (11.33) we have kept explicitly
the photon creation operators al (k,A) but not the annihilation operators
a(k, ). The reason for this is that the photon creation part produces a
nonnull state vector when Hine acts on the initial state |i) = |14;0; 0y,) in
which there is an electron in state a, no positrons, and no photons. Thus
only the photon creation part contributes to (I|Hine|?) in the expression

_ o (i Hine| D (1| Hine |2)
AE; = Iz#: B F, (11.35)

for the second-order energy shift of state i. Each intermediate state 1) will
have one photon in the field. The intermediate states generated by Hint|a)
are easily seen to be of the following types:

|1a;0;1,) (t=m= a)

11m;0;1),) (£=a)

|imla; 1e1g,) (m#a)

11a;0;1,) (£—m)
with By = Eq4wi, Entwi, Em+Es+E¢twy. These states are eigenstates
of the unperturbed Hamiltonian

Hy = /d3z¢1[a.p+ﬂm+V]zp+%/d%(E2+B2)

= Y Enlbhbm + dhdnl + S wral g, - (11.36)
m kx
With these intermediate states it follows from (11.35) that
Bk 1 g . (=K)CA ., (K)
= 2| —— — atm+ mtat
ABs = ¢ (27)3 2wi ; [; Eq — Ep —wi
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£ Y 3 Gt (CWCnye ()

L m#a —Ea - Et — Wk

b 3 (WO, ()

—Wg

/3
+2 E C"l\+a+(—'k)ct)‘—t—- (k) ] (1137)
L

— Wk

We assume once again that the physically significant energy shift due to
_Hinc of the state a is the difference between AE, and AFE,., where AE,,
is the shift due to Hin, of the vacuum state |vac) = [0; 0; 0,). For tl:
latter the intermediate states Hin|vac) are of the type g

[0;0;1),) (£=m)

with E; = E,, + E¢ + w; and Ej = wy, respectively, and E; = 0. Then

Bk 1 g CX  (—k)C
AEvac = 62 —— l—m+( )m+t-—(k)
Cle (-K)CR, (k
+D e W, (11.38)
[

and consequently the physically significant “dynamical” contribution to the
energy shift is

Wp = AE— AEe.

BE 13 c? —x\C>
62 P — a+m+( )Cm+a+ (k)
(2m)3 2wy, Z [Z E,—Epn —wi

A=l

Cr .. (=K)C>,,_(K) C>r ot (—K)C
+ —a+ atl— at-a+ ) L—1— (k)
zl: Es— Er+wy +2; —Wk

2
= o2 [ 2k IZ Cai (=k)Cly(k)

(2‘”)3 m A= Ea - E] - Wkéj

o [ Bk 1 < \ R
e (—2;‘)5@22(1—61)Caa(—k)c“(k). (11.39)

It is interesting to compare this with the result of nonrelativistic QED.
In the latter there are no negative-energy states, so that the second term
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in the last expression for Wp above is absent, as are the negative-energy
contributions to the first term:

Can(=K)Cralk
Wp —e / @n) MEZ_‘(E_)T—T(ET)' (11.40)

In nonrelativistic theory, furthermore, the “yelocity” a — p/m and there-
fore

Cr'}a(k) /daz‘ﬁn(x)p ekx¢a(x)e—.kx = —(n|p €eL.€ ‘k'x|a)
(11.41)
and
e2 d>k
Wp —
(2m)3 2wy ?:1 2":
 {alp- ey * X in)(nlp - exye= K la)
Wan — Wk
= 2_.72 1 E 2 (alp ekxe‘kxlﬂ)(nlp ekxe_'k'xhl)
= RV Wi —
(11.42)

where a is the fine structure constant (o = e?/4whc in Heaviside-Lorentz
units) and we have reverted to a discrete mode summation with the quanti-
zation volume V. This is indeed the nonrelativistic QED expression for the
level shift of state a due to the coupling of a bound electron to the vacuum
field, as given by equation (3.54).

Exchange and Nonexchange Contributions

Both W [equation (11.32)] and Wp [equation (11.39)] may be divided into
“exchange” and “nonexchange” parts according to the way the intermediate

states j appear:

Ws = WX +WHX, (11.43)

Wg( = ZéjAajja , (1144)
J

WX = Y (1= 6;)Aaaji ; (11.45)
J

wp = WX+whx, (11.46)
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d3k ( k)Ca (k
WX = a( )

b 41r2/ ZE E,—E; — ké&; ’ (11.47)

whr = % / Az‘; ;(1 — §)C(~k)CA(K), (11.48)
wheIrte m;lwbwe write k instead of Wi for the photon energy.
ot SETS T e
e e ; feirst tha.ar;d Wg'* in forms more closely resemblmg W and whx.

62
Aremn = 5= [ [ @ 6000)81,(<)a ()
1 d°k ik (x-x')

| k2 °
_ &2k
- =[5 / Bz} (x)e KX g, (x)
X d3 L n_—ik-x’! !
' dm(x)e én(x'), (11.49)
where we have used the Fourier representation of 1/|x — x’|. Furthermore
[H, et kX = 44 getikx (11.50)
and
.k. 3
(mIH, XK X]|n) = (B, — Ey)(mler®X|n) , (11.51)

wh:}rle t‘H = a-p+PAm+V(x) is the first-quantized, one-particle Hamiltonian
so tha ,

(Bm — En)(m|eX X ny = £k(m|azet*X|n) | (11.52)

where a;p = a - k/k. After some straightforward algebra we obtain from
these results

3
WX = i/ﬂ“_ !
§ 4n? kJZEa—E,-—IuS,-

x [Cai(=K)Cia(k) = Co; (-K)CTa (k)] ,  (11.53)
where we define, following (11.34),

C2; (k)
Caj (k)

1
z / d®z¢%(x)a - ke;(x)e~ KX | (11.54)
/dsz¢;(x)¢j(x)c"k'x . (11.55)
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Thus
wX = Wi +w{
a d3k 1
= W/T;EG—E,-—MS,-
x [CL;(~k)Cja(k) + C%(—k)C}4(k)
Caj(—k)Caa(k)_ 0'(_k) pa(k)]
d3k Caj(-k)Cja(k) L)
= 4«2/ EZ 5B~ k5,
where

i'f(") = f(1) + £(2) + f(3) — £(0).
A=0
We have similarly

WX = ) (1= 65)Awi;
i

Y o A LAC T

472

and therefore
WNX = WNX+WNX
. 2(1—6 ) [Cla(-R)CH(K)
+ CZ.(-Kk)C;j (k) Co,(-k)Cj; (k)] -
Similarly .
o @k o 0
Aaajj = 4_7|3/_k'z—caa(—k)cjj(k)

and C;(k) = 0 from (11.52), and so

Wik = 22 [ T S0 - 6) (-0 - Gk

(11.56)

(11.57)

(11.58)

(11.59)

(11.60)

C3;(k)]

(11.61)
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and

whNX = WX+ whX

4

- = ",c_fz(l-s,-)[c,‘,’a(—k)C}’,-(k)

- iC:a(_k)C}j(k)] : (11.62)
Now -
L oo (-0ck) = 20 [#=f d3z’¢;(x)¢“l(:)¢;x(”“')¢i(xl)
- / &z / s 'JO(;)_JET,) (11.63)

d3k 3 2,".2 3
/ =5 2 Caa(-WC(k) = ‘J‘Z / Pz / B’
A=1

L da (X)ax¢a(X)¢*(X’)aA¢; (x)

|x — x|

- 2 [ o 3 34)
(11.64)

where ag = L) = @ -€},,A = 1,2; a3 = k - a/k; and J¥(x) and J;‘(x)
are the current densities associated with states a and j. Then

whNX  — —/d3 /d3 '2(1—6) a,,(x)J"(x’)

- x|

a J /
= H/daz/d%/ nf;‘)_n;l(x) ’ (11.65)

where J}, (x) is the current density associated with negative-energy states.

The shift of level a is given to second order in the fine structure con-
stant by the sum of W¥ [equation (11.56)] and WNX [equation (11.62) or
(11.65)). As the form (11.65) suggests, W™X is associated with vacuum
polarization. This term has no analog in nonrelativistic QED. WX reduces
in the nonrelativistic limit to the shift in level a due to the coupling of the
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electron to the vacuum electromagnetic field or alternatively, as discussed
in Chapter 4, the coupling of the electron to its radiation reaction field.
We will now consider a few applications of these expressions for WX and
WNX,

11.4 Self-Energy of a Free Electron

We will first apply the results of the preceding section to the case of a free
electron.

In this case Jpeg(x') = 0, since in the absence of any external potential V
there is no preferential direction for current associated with all the negative-
energy states. Then, according to (11.65),

Ja0 (%) Jpeg (X'

1
NX _ d3 d3 ! g
w 4 / * / T = x|

e? X)Pneg (X’
= Z;/daz/dsz'pa(lx)’f;,(l ) s (11.66)
which, in the language of hole theory, is just the Coulomb interaction of
the free electron in state a with all the electrons of the filled Dirac sea of
negative-energy states. For a free electron described by any of the plane-
wave states of Section 9.2, WNX is a (divergent) constant, independent
of the state (momentum) of the free electron.! Thus we can take this
unmeasurable, physically uninteresting energy of a free electron to be zero.
(In the presence of an external potential, however, WNX gives rise to an
additional, vacuum polarization energy, as discussed in Section 11.8.)
Consider next the energy WX for a free electron. Defining r and u by
writing x = r —u/2 and x’ = r +u/2in Agjjq, We have

2
wX = -;;/d%gﬁ‘l , (11.67)

K1 u

where

G(u) = E 6; /d3r¢;(r - %u)qﬁj(r - %u)qS;(r + %u)qﬁa(r + %u) (11.68)
i

1To calculate p(x), for instance, it must be remembered that (11.66) was derived
without the covariant normalization factor m/E) in (11.26) and (11.27). Thus the

appropriate plane-wave normalization factor is not }A| = /(E + m)/2m, as in Section
9.2, but \/(E + m)/2E. Then pa(x) = constant. Alternatively, of course, we can include

the covariant normalization factor in (11.26) and (11.27), use |A| = {/ (E + m)/2m, and
obtain the same result.
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. 2)For an electron at rest with spin up in the z direction we have (Section
1
_[110
¢a(x) = V 0 (1169)

0

For the positive-energy intermediate states the wave functions are given by

T 5 E;+m
i+m 1 0 .
AX) = — J_____ ip;-
¢3(x) VVV 25 E+m| »i P, (11.70)

Pj+
1 |E 0
i+m 1 E. .
i X) = —_ ] —_— ]+m iP;-
¢i(x) Vv\/ 2E; E;+m pi- e (11.71)
—Pj2

fqr spin up and down, respectively, while for the negative-energy interme-
diate states the corresponding wave functions are?

( Pjz \
/1 Ei4+m 1 .
$i(x) =/= 2 Pj+ —-ip;-X
i) VV 2E; Ej+m \E,- AP (11.72)

0 )

[ pi- )
¢J(x)—\/v‘\/ B, E+m o e (11.73)

Ej+m}

Wesha\:e introduced the factor \/1/V in order to have the normalization
J &Pz¢*(x)é(x) =1 for ¢a(x) and ¢;(x). Using these results, we calculate

¢a(l‘ — -2-u)¢j(r —_ §u) = V Jszesp,.(r—u/z) (11'74)

for positive-energy states j wi .
positive-ener gtyts anes ‘;lw"fh spin up and ¢3(r - 1u)e;(r — du) = 0 for
gy states with spin down. For negative-energy states j with

2 .
Recall that E; = +, /p” + m? in the definitions of these spinors.
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spin up and down we obtain respectively

. 1 1 1 [Ej+m_pjz _—ip;(r-u/2) 11.75
$e = W= 39 =7\ T 4wt (11.75)

and

e 1 loy= L [Eitm _PBi-  —ip;a-u/n) (11.76)
du(r— 5u)¢j(r— Eu) =v 9, E, . (

Then

2
1 3 tEj+mi _ip;u_ P;j .p;u
Gw) = 72'/ d ’JZ_ 2E; |° (B +m)y

1—'E;j+m E; - m] ip,u
_ L 1—=L—|e
- VXJ,: 2E; [ Eij+m

_1.. 'ﬂe"p.‘i'u
Vi E;

(11.77)

b

where the prime on the summation symbol implies that the sum over spin

states has already been performed. .
We now go to the continuum limit and replace the 3sum over momenta

p; in (11.77) by an integral, so that Zj' — (V/8n3 [ d®p, t}}e replacement:.

familiar from the continuous summation over electromagnetic field modes:

pu m

ip- ip-u
_m 3, € U I T el (11.78)
6w =5z [ #55 = 53 | Fr g
Then, from (11.67),
2 [d3y m- P
x _ & [jeuv ™ ip, -
Ws = %) wame p,/p2+m2
mez dsp / dsu eip.u
= 6414/ ,/p2+m2 u
_ me / dp _ me / T a1
T 1673 ) p2p2+m? 47 Jo \/p?+m?

Thus WZ is logarithmically divergent (Weisskopf, 1939). Replacing the
upper limit by A (A — 00), we write

/ 2
s - 472 m T m
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In nonrelativistic theory the negative-energy contributions to (11.77)
are absent, so that

1 IEJ +m ip;u A 1 ! ipu _ 1 / 3__ip-u _ <3
G(u) sz: 3, e = VX].:C =53 d°pe = 6°(u)

(11.81)

2 3
wX - %F / A C)) SI) , (11.82)

which, when expressed in Gaussian units, is identical to the electrostatic
energy (5.16) calculated nonrelativistically for a point charge with charge
density p(x) = e§3(x). Evidently relativistic QED effectively “spreads out”
the electron charge compared with the nonrelativistic distribution e83(x).
This is discussed in the following section. The result is that, whereas the
electrostatic energy of the electron diverges linearly in nonrelativistic QED,
the divergence in relativistic QED is “only” logarithmic.

Let us now turn our attention to the “dynamical” contribution to the

energy of a free electron at rest. From (11.47) with E, = m for an electron
at rest,

and

WX @ ﬂiz<auaxe"k~x|j><j|ake-"kX|a>
b= an2 |k , m — E; — k§;
A=l j
a V [Pk [ 53
= e T/ LY

« {alaxe®X|p, +,5)(p, +, s|are= K X|a)
m-—E, —k

ik-x ~ikx
aja)e P, —, S)\P, —, sja)¢e a
+ E | m+)1(5' +k| I )]’ (11.83)
P

where E, = +,/p?+m? and |p,+,s) is a free-electron state of energy
+Ep,, momentum p, and spin s “up” or “down” along the direction of P

Since
= ‘/lu (11.84)
[ )

1
la) = /v

OO O =
|
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and
(-') LPX 11.85)
Ip,£,8) = VV"2E(E T m) Up,+ ) (

where the column vectors w are those appearing in (11.70)—(11.73), it
follows that

; 1 1 () a__i(k+p)x
(alene™*lp,£,8) = 7\/5;;—,,@;?",—){"1“*%*} X / doe
= {uaaxw ,:i:}6 (k + p): .
14 v 2E,(E, +m) p

3 1
. ik- S —
(alaxe’®X[p, £, 5)(p, £, slaxe ™ ¥ |a) = [2E (E, +m)]

and

_ |ulaxwg,)i|263(kip)/dau—i(kip)-x

8r° ___1__] fudanwis [76%(k £ p).
V |2E,(E, + m) .
(11.87)
Then
o . o [k 1 ii
Wo = “42 ) TF 2E(Ertm) m L

1 (8) 2 wi®) 2

X luaa’\w"kd‘l |u k.- | , (11.88)

Ex+k-m Er+k+m

with E = V&2 + m?. Using equations (11.70)~(11.73) for the column vec-

tors wg ,):h’ we calculate by simple matrix algebra the spin and polarization

sums

2 2
ZZI“IO‘AW(_’]):J(P = 2%, (11.89)

A By +m)? (11.90)

M ©
™
e
2
e’-\
g
|
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and consequently

wi = __/ds_’c _ B+ m)?
b 4r2 | k Ex(Ex+m) |Ex+k-m Er+k+m
_ o [d&% 1 2km(Ex + m)
T 4g2 k Ek(Ek + m) 2k(Ek + k)

_ ma /°° 4xk2dk 1

ma [ 1/1 1
= — kb= — - ——
L /o dk k (Ek E; +k)

- 2 v [ e
- o VE2+m?2 Jo k+VEZ+m?
mao A
— glog; (A — o0), (11.91)

where, as in the calculation of WSX , we have cut off the upper integration
limits at k = A.

We showed in the preceding section how W& reduces in the appropriate
limit to the nonrelativistic self-energy discussed in Chapter 3. In the case
of a free electron the nonrelativistic self-energy, including retardation, is
given by (3.59):

. 16a [  dkk 32 A
AEﬁe = 6m = T A m g —3—-malog;n— (A o d OO) (1192)

in the present units (h = ¢ =1, @ = e?/4~x) and with the momentum cutoff
A. '

In relativistic theory the complete self-energy is given by the sum of
(11.80) and (11.91):

AE"™ = §m=W¥ + W = 3;m logA - (11.93)

This result was first reported by Weisskopf (1939). In the following chapter
we will derive it again using the methods of covariant perturbation theory
and Feynman diagrams.

Note that for both W& and WX the divergence would be linear rather
than logarithmic if the negative-energy states were excluded.?> For both

3 This was noted following (11.82) for Wx For WX the omission of negative-energy
states is equivalent to dropping the lecond term in brad(ets in the first line of (11.91)
and is easily seen to cause a linear divergence.
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terms, furthermore, an addition of positive- and negative-energy contri-
butions, rather than the correct subtraction, makes the divergence linear
rather than logarithmic. A linear divergence is traditionally associated with
nonrelativistic theory.# In this connection it is perhaps of interest to recall
some remarks of Weisskopf (1989):

Pauli asked me to calculate the self-energy of the electron on the
basis of the positron theory to see if this energy is less divergent in
that theory. I found that it diverges equally badly and I published
this result. A few weeks after the publication I received a letter from
Wendell Furry, who worked with Oppenheimer at the time, informing
me that I had made a simple mistake of a sign in my calculation. If
it is done correctly, the divergence is only logarithmic. The positron
theory improved things considerably, in contradiction to my paper. I
was down and depressed to have made and published a silly mistake
in such a fundamental problem! I went to Pauli and said that I
wanted to give up physics, that 1 would never survive this blemish.
Pauli tried to console me: He said, “Don’t take it too seriously, many
people published wrong papers; I never did!”

What followed shows how decent the relations between physicists
were at that time. I asked Furry by letter to publish his result under
his name or at least to coauthor a paper correcting the mistake.
But Furry was a gentleman. He answered, no, I should publish a
correction in my name only and mention him as the person who drew
my attention to the error. Since then, the logarithmic divergence of
the self-energy of the electron goes with my name and not Furry’s

11.5 How Big Is an Electron?

The free electron electrostatic energy Ws = W_g-x calculated in the preceding
section derives from the expression [equation (11.28)]

(a|Hs|a)

e? 3./ 1 /
- ] &z / P2 (el

e [du [ 3 1 1
= £ [ [ Ertalete — quate+ i)

€ 3"
- gj; / iu— / #r{alp(r)p(r + w)la) - (11.94)

4 Nonrelativistic theory here means that retardation is neglected. See the penultimate
paragraph of Section 3.9.
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C.o.mparison with (11.67) suggests the interpretation of G(u) as the proba-
bility for finding charge at two points separated by the distance ju| within
a (':h:—‘uge distribution described by the charge density ep(r).® Let us accept
this interpretation and see what it says about the charge “distribution” for
the electron.

G(u) is given by (11.78), and can be evaluated as follows:
ebu

VT

Gu) = g’,’,% d®p

m R 2 L]

= g2 /0 \/—fzﬁ_éﬁ /0 d0 sin GetPH <058

- m1 ® dppsinpu  m 10 [ dpcospu
272u Jy Jpr+m?  2nudu m

= ﬂ_liH(l)-

- 47i u Hu 0 (zmu), (11.95)

1) .
?vhere HS .) is the zero-order Hankel function of the first kind. For mu << 1,
i.e., for distances u small compared with the Compton wavelength m—!

(= h/mo),

m 1 _
G(u) = 537 (u << m™). (11.96)
For mu >> 1,
o[ m\32 __.
G(u) = (h—u) e (mu >> 1). (11.97)

We can go a bit further and construct an effective charge densi
1ty pe
such that [cf. (11.94) and (11.67)] g Y peri(r)

Brpea(r)pea(r +u) = G = 3, &P Y
/ en(f)penr(r +u) = G(u) = g5 [ Ep s

Writing peg(r) = [ d34(p)e’PT, and solving (11.98) for 5(p), we find

(11.98)

mlf &p ePr _ . m 19 [* dpcospr
B VE(®) 2nror), [pPP+miiA
o 9=5/2,-3/2,,.-5/2 (11.99)

for r << m~L; for r >> m™!, peq(r) decreases exponentially as a function
of r (Weisskopf, 1939).

Peﬂ'(l‘)

50Of course p in (11.94) is an operatar.
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These results indicate that relativistic effects act to “spread out” the
electron: whereas the nonrelativistic theory, with negative-energy contri-
butions absent and E(p) = m, gives G(u) = &%(u) [equation (11.81)],
the relativistic theory introduces a natural length scale m~!, the Compton
wavelength, such that the effective electron charge distribution decreases
exponentially with mr. Like the nonrelativistic theory, relativistic QED
gives an infinite charge density at r = 0. However, the divergence is weaker
in the relativistic theory with G(u) oc u=2 near u = 0 rather than the be-
havior G(u) = 63(u) predicted nonrelativistically. The divergence of G(u)
at u = 0 is responsible for the divergence of w¥:

2 3
x o &[4
w¥ = & | 56w
e? 1 duy? © Juu?
- 57;4”' [/0 u G(“)'*'/ul " G(u)]
e? Y1 Juu?2 m 1 ®© Juu
- _2_[/0 u EFFJr/ul ” G(u)], (11.100)

where u; is small compared with m~! but otherwise arbitrary. The second
term in (11.100) converges, whereas the first term diverges owing to the
lower integration limit v = 0. Let us replace the lower integration limit
in the first term by some very small length u,, = A~!. Neglecting the
convergent second term, and choosing u; = am™~1, where a ~ 1, we have

am™! mao A
AT - w o (o)

(11.101)
This is indeed the same as (11.80) and shows that the singularity of G(u) at
u = 0 is responsible for the divergence of the electrostatic self-energy of the
electron. The point is that, although relativistic QED does in effect give a
spread-out electron, with the length m~! as the characteristic spread, the
function G(u) still diverges badly enough at u = 0 to make W infinite.
We can infer from results such as (11.97) that, as a consequence of
vacuum fluctuations, an electron in some respects behaves as though it
is spread out over a distance on the order of its Compton wavelength,
m-1 = 3.86 x 10~!! cm. This distance is about 137 times larger than the
classical electron radius ro that arises from classical considerations when
one supposes that the observed electron mass is entirely electromagnetic
(Chapter 5). As we have emphasized in earlier chapters, relativistic QED
makes such classical considerations largely irrelevant, for any attempt to
localize the electron to within a distance ~ ro introduces vacuum fluctua-

-1
me2 [*™ du me? )
— — = e 10
472 Joo1  u 472 &

w¥ —
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tions associated with electron—positron pair creation, making it impossible
to probe distances ro << m~1.

The: spread of the electron charge distribution just considered is associ-
ated with elect.rostatlc self-energy and involves the electron—positron Dirac
vacuum. The interaction of the electron with the electromagnetic vacuum
field is al§o modified by relativistic effects. In connection with Welton’s in-
terpretation of the Lamb shift (Section 3.6) we calculated the mean-square
displacement

2 [* dk
Ar)?) = — —

((Ar)*) T2 /0 : (11.102)
d'ug tf’ the coupling of an unbound electron to the vacuum field. A rela-
tivistic calculation modifies the integrand of (11.102) by a factor (m/k)?
for k >> 2mc?:8

2 20 km dk 2am [ dk 2a k

((AI‘) )—> 2 / T+T - Fﬁmlog-ﬁ— s (11.103)
where ky, ~ m and ko is a low-energy cutoff on the order of the binding
energy of a bound electron.” Thus relativistic QED gives a convergent
result for ((Ar)?), with root-mean-square displacement ((Ar)?)1/2 ~ m~1
if we take k,, ~ m = 0.51 MeV and kg ~ 13.6 eV.

It should be emphasized that the “spread” of the electron associated
with relativistic effects does not alter the fact that the electron in QED is
regarded as a pure point particle. The “spread” is associated with quantum
fluctuations in the position of the point electron: the electron jiggles around
as a consequence of vacuum fluctuations.

High-energy scattering experiments probing small distances indicate
that the electron, if it is not a point, is certainly no larger than about
1015 cm. A simple application of the uncertainty principle then suggests
that any constituent particles within the electron, analogous to the quark
constituents of hadrons, would have to have kinetic energies > p = 10°
cm™! ~ 20 GeV, which is about four orders of magnitude greater than the
electron rest energy. It seems improbable, then, that the electron has any
“structure.”

11.6 Mass Renormalization

Because we considered specifically an electron at rest, we can regard A Efree
in (11.93) as the electromagnetic mass §m, as of course we have already

e The correspondlng “reduction factor COlllpued wlth nonrelativistic theoly m
“lgl’ll "l/k for k>> m. B
See the remark followmg equatlon (3-41)-
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done. The observed mass is evidently

Imoax A
m=m0+6m=ma+Tlong: ) (11104)

where m, is the bare mass (Sections 3.5 and 5.3). T.ha.t is, ém is the part 9f
the electron mass attributable to its interactioy with the electromagnetic
field, whereas m, is of nonelectromagnetic o_rigm. We have ‘rc?placed mhb);
m, in the expression for the electromagnetic mass, recogmzing now tha

the mass in the Hamiltonian without coupling to the electromagnetic field
should properly have been taken to be the bare mass rather than the actual,
observed electron mass m.

Equation (11.104) presents a difficulty: the observed mass seems to
depend on the arbitrary choice of the cutoﬂ'_ A. However, since the bare
mass, like the electromagnetic mass, is not by itself ob.ser'vable, we can argue
that it can depend on A, and in such a way that m is in fact independent
of A. Thus we suppose that m, = m,(A) and require that dm/dA = 0.
Equation (11.104) then yields

dm, , _Sam, (11.105)
dA T 27 A
to order . The solution of this equation to order «, subject to the “bound-
ary condition” (11.104), is

3o, A
m,,(A)gm[l—E%log ] (11.106)

m

to order a. _ o
To see what this accomplishes, consider now the mass term in the orig-

inal Hamiltonian without coupling to the field:

3 A
/ Boytpmey = / Pyl pmy — 2 / Pyl Blog v
= / Pzt Bmy + Heounter - (11.107)

This means that we can use the observed mass m in the Hamiltonian, pro-
vided that we include an additional “counter term,”

Hcounter =

—%ﬂ da:mptﬂlog%i/;: —5m/d3z¢’fﬂ¢ . (11.108)

L

in the Hamiltonian. And now when we calculate AEfree Fo order o as
before, using the observed mass in the uncoupled Hamiltonian, we obtain
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an energy shift given by the last term in (11.104) with m, — m, plus the
shift due to the counter term:

3ma A 3ma A
27 08— — < —log—=0. (11.109)

A Efree —_

Thus, to order a, we can eliminate the infinity associated with electromag-
netic mass by an appropriate reconstruction of the Hamiltonian.

Obviously this is just a way to “hide” an infinity, a different way of per-
forming mass renormalization. We are still left with the fact that m, — —oo
in the limit A — oo of no cutoff. However, we cannot say for sure whether
this is a real problem. When we go to higher orders in « in perturbation the-
ory, we find that the electron charge, like the mass, must be renormalized,
that the bare charge e, must depend on A, and that e, — 0o as A — 0o. In
particular, the fine structure constant o = e2/47 must itself be renormal-
ized, and as a function of A it can exceed unity — at which point the whole
perturbation procedure breaks down and we cannot sensibly compute m,
in the manner described previously.

It seems fair to say, though, that there is nothing wrong with the renor-
malization procedure per se: we will have to renormalize (or use a counter
term in the Hamiltonian) even if m, and ém are found in a future theory
to be finite (Section 3.5). In a sense, then, the present-day formalism of
renormalization is a way to obtain correct answers without having to know
the bare masses and charges, be they finite or infinite.

11.7 The Lamb Shift

We have already given nonrelativistic descriptions of the 2s, /2—2p1/2 Lamb
shift in hydrogen in Chapter 3. We now consider, using old-fashioned per-
turbation theory, the relativistic QED theory of the Lamb shift (Kroll and
Lamb, 1949; French and Weisskopf, 1949). The expressions derived in Sec-
tion 11.3 allow us, in principle, to calculate the energy shift of any electron
state |a) to the lowest order in perturbation theory:

W(a) = WX(a) + WX (a) = W¥(a) + WE (a) + WNX(a). (11.110)

Consider first

W (a)

a dsk iK- 7t —-iK-
25;'/1,.,','“: a;/-y,—Z&,-(ale kle)(]Ie kx|a)
i i

a [k kXt ik
= 727 | T 2 bilale ¥ Xi)(jle* X a) | (11.111)
)
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where we have written Ag;;, as defined by (11.49) in bra/ket notation. Now

S byale* X3 *Tla) = Y (ale™ kX i ek Xl

f H
— (ale—ikxl%I (El])(]l) e"k'x|a)
= (aemkx L kx)gy (11.112)

|H|

Here we have used the completeness relation 3 _; |7)(j| = 1 and have defined
|H| as the operator having the same energy spectrum as the unperturbed
electron Hamiltonian H, except that all its eigenvalues are taken to be
positive. Thus we can define |H| = VvH?. Using the general operator
identity

ek Xp(p,V)ekX = F(p+k,V) (11.113)

for any function (such as H/|H|) having a series expansion in p and V, we
may write

WX (a) = ;'7/1_2’“(4 [I—Z—I]mk lay | (11.114)

where [F(p, V)]p +k =F(P+k, V). Thus [H ]p +k for instance, is simply
the original unperturbed Hamiltonian a - p + fm + V with the c-number k
added to the operator p. The evaluation of (11.114), then, reduces essen-
tially to the evaluation of 1/|H 'p +k in terms of operators whose expectation

values in the state |a) can be calculated.
To this end we follow Kroll and Lamb and write
1 1 _ 1
IH|p+k Ek+lHlp+k_Ek - Ek +Ak ’

(11.115)

with Ex = (k? + m?)"/? and Ay = |H|p, — Ex and assume the validity
(see later) of the expansion

1 1 Ay A2

—_— =k kL 11.116
ok B BB (11.116)

To obtain an expression for the operator Ay, we note first that

Hlpyx = HEY =l p+pm+ VY)Y

[p2+k2+m2+2k-p+V2+a-(p+k)V

+ Va - (p +k) + 28mV]'/?

= [E}+p*+2k-p+V2+2V(a-p+a-k+pm)
+a-xV]/?, (11.117)

whercf a -‘rV = a-pV —Va-p,ie., x denotes the operation of p on the
function immediately to its right. Thus

o 62 8
Ay = |H|y, x —Er = (E2+6) /2 ~Ep = % __"k_4 Tk __
p+k—Er = (Eg+8) k= o5 8E,§+16E,5; .., (11.118)

with
=P’ +2k -p+V:+2V(a-p+a-k+pfm)+a-xV.  (11.119)

~ Equations (11.116), (11.118), and (11.119) allow us to evaluate W (a)
in terms of expectation values in state |a) of operators p2, V2, Va p, fm, a-
xV, ..., each such expectation value being multiplied by an integral over
k as indicated in (11.114). A similar calculation can be made for W& (a).
First we write W (a) in a form resembling (11.114):

Wi = % [CEy v fedme kTl Glase* o)
472 k - E,— E; — ké;
A=1 j a ) J
- > ﬂ Zz: Z (a|a,\e"k'x|j)(j|a,\e‘k'x|a)_
472 k yurfll e ,E]I + k- E,

_ z (a|a>‘e_‘k'x|j)(j|a>‘e‘k'x|a)
= |Ej|+ &k + E,

o [dPk <
= 5 [ T Ltalo
A=1

H/|H|+1 H/|H|-1
X
[IHI+k—Ea |H|+k+Ea]p+k“A'“)- (11.120)

Then we expand the operators in the denominators analogously to (11.116):

. - 1 _ 1 (Artw,) 1
[|H|+k:f:Ea]p+k D;:+Ak:f:wa = D’::: (1)‘;1;)_"'—2 +..., ( 1.121)

whete Df = E, + k+ m,w, = E, — m, and A; is defined as in (11.118).

‘The calculation of W (a), like W& (a), now requires the evaluation of
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expectation values of various operators p?, V2, ... in state |a), multiplied
by integrals over k. For Wg (a) we must also sum over the polarization
states A = 1,2.

The calculation of WX(a) + W (a) is thus a straightforward but te-
dious exercise, even when the expansions above are truncated at some low
order.8 Kroll and Lamb (1949) retained all terms effectively up to fourth
and lower order in v/c, and were still faced with the evaluation of “a sum
of expectation values of various operators ... each multiplied by a combi-
nation of some 50 elementary integrals over k. They found to this order
that?®

[W_g( (a) + Wg (@) = (alBémla)+ %(ah . pla)
200 k,' a
+ g;(ala-pla) + ypmm— (a]Ba - xV]|a)
@ m 11 9
T 3rm? (1°5 ok T 24) (a|x*V]a). (11.122)

To explain the meaning of k;, and the prime on the left side of this equation,
we consider briefly now the validity of the expansion procedure used in
obtaining this result.

The expansion (11.116) can be expected to be valid for all values of k
if p?/m? and V2/m? can in effect be regarded as numbers less than unity,
since E; — 1 as k — 0. Although V(x) can in fact be large and even infinite
for small x, this occurs for the Coulomb potential only for a small region of
x, and does not substantially alter expectation values involving V. Similarly
p2da(x)/da(x) can be large for small x, but this does not invalidate the
expansion procedure if the expansion is carried out to fourth and lower
order in v/c. Similar considerations apply to the expansion (11.121) ezcept
that Df = Ex+k-m —0ask — 0, and so 1/D{ cannot be regarded
as small compared with unity for all values of k. Its integral over k can be
carried out only down to some k;, and for 0 < k < k; this term must be
treated separately.

This separate treatment of the 1/D;} term defines the energy k; in
(11.122). The prime on the left side indicates that the low-k contribution
from the 1/D{ term has not yet been taken into account.

The latter, low-k contribution, however, is essentially nonrelativistic,
and can be evaluated as the level shift calculated nonrelativistically in

8The calculations are sufficiently tedious that the author has not himself attempted
to verify them in detail. The same result as Kroll and Lamb, obtained independently in
essentially the same manner, was reported by French and Weisskopf (1949).

9We have written this in a form slightly different from that of Kroll and Lamb, and
in particular we have written explicitly the electromagnetic mass sm.
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.Chzfpter 3. Prior to the nonrelativistic mass renormalization, that shift
is given by ,

AE, = AES®™ 4 AEfree (11.123)

i1¥ the notation of Section 3.5. Using the present units, and introducing a
high-energy cutoff k; in (3.23), we write

free __ 20 2 ks 2a
AESS = —— 3 [Pmal /0 dk = — ki(alp®la) . (11.124)

3rm?

From (3.26) and (3.27), using now k; instead of m for th i
(325), s aet m for the energy cutoff in

2a k,‘

1 2 o
3rm? log € §(a|V la) = 3

AEgb’ =

k;
log—E—(a|‘A’2V|a), (11.125)

wm?2
where ¢ is Bethe’s “average excitation energy.” i
gy.” Thus, adding (11.124
(11.125) to (11.122), one finds 8 ) and
X
Wi (@)+W5(a) = (alfbmia) + —(ala-pla)

¢

+

(a]Ba - xV|a)

4mm
2a k,’ 1
2% [tla-pla) - 2 (alpla)
__a m k; 11
I? (log oF, + log —+ ﬂ) (a|*?V |a).

(11.126)

Now writing (a| = (d)l {1), we have (¢|a - pla) = 2Re¢lo‘ - p€s. Using
the nonrelativistic approximation €, = (¢ - p)¢4/2m for the “smal‘; compo-
nent,” as in (9.58), we have furthermore (ala-pla) = Re[¢q(0 - p)?d4]/m =
(a|(e - p)?|la)/m = (a|(p?/m)|a). Then the term proportional to k; in
(11.126) .vanishes to lowest order in v/c. That is, the nonrelativistic r;lass
renormalization term (11.124) cancels the third term on the right side of
(11._122). We also see that the result obtained by joining the low-k contri-
bution to (11.122) is independent of the “joining energy” k;:

Wi @)+ Wh(a) = (almla) + —(ala-pla)

o

+ 2 (alfer - 4V1a)

4rm

__a m 11
s (log? —log2+ —2—5) (a|**V]a).
(11.127)
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There is one more contribution to the energy shift of the electron in. state
|a), namely WNX(a). As discussed in the next section, the evaluation of
H

this term yields

2a [ dkk? o 2
”m”@=—§L T alVIo) = o (@l Vle) (11.128)

The level shift of state |a) is therefore

W = WE@+WE@+W @
2 © dkk?
(aipla)sm ~ (alvia)3s [~ G + g (ala plo

2% (a|Ba - VV|a)
mTm

4
m 11 1) 2
m_ = _ 2 ) (a|V2V]a). (11.129)
4y (10 —log2 + 55— 5 ) (alT V).
The term!®
o MmOVl = —2 m o|2(Em — Eq 11.130)
§7r—m-§log-e—(a|v V0a) = Fym— log B ;‘pm |*(Em ) (

is identical to Bethe’s nonrelativistic result (3.26) for the Lamb Shl'ft. In
the result (11.129) of the relativistic calculation, however, the mass ln.the
factor log(m/e) appears naturally, from an integral over k, nf)t. as a high-
energy cutoff. The cutoff k; corresponding to Bethe’s nanelz_;t.lvmhc cutoff,
as already noted, cancels out in the relativistic calculation.

Energy Difference of the 2s,/; and 2p,/; States

For the 25/, and 2p;/; states of the hydr9gen atom, \.Nith equa.l' unper-
turbed energy levels according to the solution of the Dirac equation, the
expectation values of 3 and V are equal, and it therefore follows thaf. t.he
expectation values of a-p = H — Bm — V are also equal. The remaining
expectation values in (11.129) have the following values:

2
9 €

2
(251/2|V?V|28175) = ma %a. (11.131)
(2p1/2|VVI2p12) = O, (11.132)
: 2
m 26
(2s1721Ba - VV|28172) = o 24’ (11.133)
y 2
m €
(2p1)2|Ba - VV[2p1y2) = _'6_"2'270‘ (11.134)

10gee equation (3.27).
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Then
W(2s172) — W(2pyy2) = _;_(:,. [';- + é] o 26:0
+ 3 (1o - tog2 + 31 - 1) 0"
= Er (e -rogz+ 22— 3).
(11.135)

Assuming the average excitation energy ¢ = 17.8 R, used in Section 3.5,
we calculate 1046 MHz for this energy difference. Kroll and Lamb assumed

Bethe’s revised values log(m/¢) = 7.7169—.0293 and («3/37) R, = 135.580
MHz and calculated

W (251/2) — W(2py1/2) = 1051 MHz. (11.136)

This result, besides being in excellent accord with experiment, is convergent
and independent of any arbitrary cutoff parameter.

Shifts of Individual Levels

In the preceding calculation of the difference W(2s;,2) — W(2py,2) the first
three terms in (11.129) drop out because they are the same for the two
levels. It is also of interest to consider the individual shifts W(2s,/,) and
W (2py/2), where these terms must be dealt with.

The (divergent) term (a|8émla) in (11.129) is an electromagnetic mass
contribution and could have been eliminated at the outset by adding a
counter term to the Hamiltonian, as discussed in Section 11.6. The term
proportional to {(a|V'|a) is also logarithmically divergent, and will be seen in
the following section to correspond to a charge renormalization, analogous
to mass renormalization. )

The term (a/67)(a|a-p|a), unlike the remaining contributions to (11.129),
is independent of V. For the case of a free electron of momentum p
we find, using the free-electron wave function (11.70), for instance, that
(a/67){(ala - pla) = (a/67)p?/\/P2 + m?. Note, however, that the correc-
tion to the self-energy of a free electron of momentum p is given, to first
order in ém, by!!

mém

—— (11.137)
p2+m2

VP2 + (m+6m)? — \/p? + m? =

11 This assumes that a correct (but not yet available) calculation of §m would give
bm/m << 1.
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so that (a/67)(a|a - p|a) does not represent a p-dependent addition to the
self-energy ém of a free electron. In particular, it is not covariant, as such
a correction would have to be.

To handle this term, Kroll and Lamb (1949) argue that free electron
operators can be subtracted from the operators appearing in the self-energy
expression in such a way that, in the resulting expression, the self-energy of
a free electron is zero. The resulting expectation value is then the observable
difference in self-energy between the electron in state |a) and a free electron.
Without the mass and charge renormalization terms in (11.129), the level

shift

a

a 1
W(a) — g-(aa -pla) — 7——(a|fa- VVla)
m 11 1 2
+ 303 (log? —log2+ 57 — 3) (a|V*Vla) ,

(11.138)

and it would appear that the first, V-independent term should be dropped
in order to have W(a) — 0 for a free electron. However, there are other
free electron operators of fourth and lower order in v/c, whose expectation
values vanish for a free electron, that can be subtracted as well in this
approach, so that the simple deletion of (a/6m){ala - pla) is not a unique
prescription. Kroll and Lamb show, by consideration of the (seven) other
free electron operators up to fourth order in v/c, that the effect of these
other operators would be to add a term proportional to the second term
in (11.138). In other words, the lack of uniqueness as to which free elec-
tron operators should be subtracted is equivalent to an indeterminacy with
respect to the coefficient multiplying (—i /2m){a|Ba - VV|a). This indeter-
minacy, however, may be removed by observing that the coefficient (a/2m)
in (11.138) corresponds precisely (to order o) to the magnetic moment cor-
rection for the electron, as shown later. Therefore (/67)(ala - pja) can in
effect be simply dropped from (11.138):

1e"
W(a) — yv— (a|fa -VV|a)
m 11 1 2
T (lOg? —log2+ 57 — g) (a|V?V|a). (11.139)

Then, from (11.130)-(11.133),

3 g2 11

a m 1 3
W) = 337, (l°“?‘l°52+ﬂ'§+§)
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= 1034 MHz, (11.140)

Wepn) - - (1) =
1/2 37 2(10 § = —-17 MHz. (11141)

Effect of Anomalous Magnetic Moment

The. argument just given for dropping (a/67){a|a - pla) rests on the attri-
bution of the second term in (11.138) to the anomalous magnetic moment
of the electron (Section 3.13). For this purpose consider the Dirac equation
(# — m — efd)y = 0 multiplied on both sides by (§ + m — e):

[(F—ed)? —~m?]yp =0. (11.142)

Using 7"7” = g‘“’+-l-(‘y“ v N T S 7 — v 1 .
, 2(7"7 ) Y = g+ 3 ] = g —iok
and p = i0, we find that (11.142) is equivalent to ’ 1= ’

[0~ eay* - SoH P - m?| y =0, (11.143)

“.rhere Fuy 1s the electromagnetic field tensor defined by (10.143). Some
simple manipulations show that

| .
50“ F,, =ia-E-X. B, (11.144)

where X is defined by (9.64). Now since —(e/2m)X - B = —(g/2)(e/2m)

xX-B Forresponds in the Pauli equation (9.62) to the energy of a spin in a
magnetic field, we surmise that (g/2)(e/2m)ia-E corresponds to the energy
(?f t.he spin in an electric field. Actually, of course, this is not quite true, as
i is not Hermitian; more detailed considerations show that the opera,tor
corresponding to the energy of a spin in an electric field is (¢/2)(e/2m)ifa -

E.!?2 Writing
Ry _ g, 1.
2(—2m)zﬂa -E = —5(2—";)zﬁa -VV, (11.145)

we see 'that the second term in (11.138) is associated with an additional
magnetic moment such that the change in g is (Section 3.13)

Ay _g-2_2@

2~ 2 o’

This justifies the assertion preceding (11.139).

A different approach to the ambiguity associated with (11.138) was

ltaken by French and Weisskopf (1949). They calculated the energy shift

in b_oth magnetic and electrostatic fields and found in both cases that the

n(ldltic?nal magnetic moment is a /27 Bohr magnetons to lowest order, thus
removing an ambiguity in their mass renormalization procedure. ,

(11.146)

135ee Grandy (1991a), pp. 72-73.
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11.8 Vacuum Polarization

We consider now the nonexchange term W¥X(a). As (11.65) indicates,
this term may be interpreted as an interaction between the current 3ens¥ty
J#(x) associated with the electrc‘m in state |a) and the c.urrent ;I;lsclai
Jbeg(x) associated with the negative-energy states of the Dlra((; sea. an
be expected that, in the case of an electrostat}c exter.nal fiel glvm}gl r

to V, the nonexchange energy reduces to an interaction between charge

densities J2(x) and Jp.g(x):

8.0 70 (5!
WNX(a) = H/d :I:Jao(x)/ = x| , ( )
where . . \
Tpeg(X) = 3 zj:(l — 8;)¢; ()¢5 (x) (11.148)
Because of the completeness relation Y, ¢}(x)¢;(x') = 83(x — x'),

JO_(x) consists of an infinite, physically uninteresting V-independent
neg >
charge density plus

T2(x) = =2 3845 (x)8;(x). (11.149)
i

The latter will depend on V' through the dependence of the eigenfunctions
$j(x) on V. Consider

plx,x) = 3 865(x)4;(x) = D 65 (x)(H/IHDS; (x)

Eif:¢;p(x)(H/|H|)uu¢ju(x')- (11.150)

j p=lv=l
The completeness relation

. PP Y S 0 ° Bk X *-X) (11.151)
3 65,0085 (%) = 6 8°(x—x') = 8 | 5
j

gives
3
1 3ik-X -ik-x’
o) = (gm) [erekem/ae
1

= (%)3 / Pre T X (Te(H/|H ), (11.152)
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and therefore

To2e(x) = =2 p(x,%) = — = / SIH/HD)p,g - (11153)

The trace in the integrand can be evaluated following the expansion pro-

cedure beginning with equation (11.115). The result, to the lowest order
required, is (Kroll and Lamb, 1949)

‘o | e dkk?] _, e 4
T2 (x) = [——16”2/ 7| VY + o VY (11.154)
From (11.147), then,
WhX@) = WPX(a)+w]X(a), (11.155)
1 €2 dkk? d3z’V’2V(x’)
NX = 1 e 3, 4% gzv "x)
W@ = g [T [ esieoee [ L
1 €2 dkk?
- = -~ d3 » a
i | T [ Fe406a0
1
3./ ' 2 -
x/de(x)V ]
e? dkk? 2a [ dkk?
= %z E—g(alvlﬂ)——'é; —E?(GIVIG)
= —C(a|Vl]a), (11.156)
NX - o [.3 . d®z'V"4V (x')
W@ = g [ rei0p) [ T

- —15:m2 /dsx¢;(x)¢a(X)V2V(x)
= _15,,.;.,"2(G|V2V]a). (11.157)

These are the results used in writing (11.128).

As remarked at the end of Section 11.3, WNX(q) is attributable to the
polarization of the vacuum by the electrostatic potential V (Section 9.5).
From (11.138) and (11.131) we see that the effect of vacuum polarization
on the 25/, state of hydrogen is to shift its energy by

2

WX (281)5) = — 15:m2 m2a22"’a ~ _927.1 MHz. (11.158)

Measurements of the Lamb shift, of course, are far more accurate than this,
and so one concludes that the Lamb shift provides strong support for the
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. . .. 13
reality of vacuum polarization.!

The vacuum polarization contribution W{¥* (a) is seen from. (11‘.147),
(11.63), and (11.58) to derive from the last, electrostatic contribution to
the Hamiltonian (11.25). As such, it has nothing directly to d'o w1t.h .the
quantization of the transverse electromagnetic field. In fact, its qugmal
calculation by Uehling (1935) made no reference to el.etftr?magnet{c field
quantization. Vacuum polarization 1s, however, a rglatlwstlc feﬁ'ect involv-
ing electron—positron pairs, as the hole-theoretic mterpr'etatlon assumes:
an electrostatic field causes a redistribution of charge. in t..he Dlre.Lc sea
and thus polarizes the vacuum. A single charged particle, in Partlcular,
will polarize the vacuum near it, so that its observed che%rge is actually
smaller than its “bare charge.” A proton, for instance, will ?ttract el.ec-
trons and repel positrons of the Dirac sea, resulting in a par?lal.screemng
of its bare charge and a modification of the Coulomjb potenf,lal in the hy-
drogen atom.!* According to (11.157) the Coulomb interaction is changed

from V(x) = —e? /47|x — x| to

1 e « 2 e?
Ver(x) = Tar |x — x'| T 157m?  4rix — x'|
2
- L 4 X 63(x) . (11.159)

“4r|x—x'| " 15wm?

This is an approximation to a more general modification of 'the Coulomb
potential. For two identical point charges (Serber 1935; Uehling 1935)

1 ez 2a Ac 1]
~ 1 € | ze — X << A(: 3
Val) = L [3”108 1+ (<<
3/2
S [1+——a ('A‘) e_zlxw] (> 2

2V/r

47 |x| [x]

(11.160)

where A, = 1/m (= h/mc) and vy = 0.5772 is the Euler—Mascl}eron.i con-
stant. Not surprisingly, the scale length determining the modification of
the Coulomb potential resulting from the polarization of the vacuum by
the charges is the Compton wavelength, A..

13 We refer the reader to Drake (1982) for a review of Lambshift.theory in few-electron
atoms. It is interesting that a primary motivation for the ongu‘ml .La.mb—Retherl'oxd
experiments was to investigate the contribution of vacuum polarization to the energy

levels of hydrogen. o )
e‘;i Tl‘:e p!lrlysicgal arguments for the vacuum polarization contribution to the Lamb shift

are summarized in Section 9.5.
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The charges and masses in (11.157) and (11.158) are the observed val-
ues. Mass renormalization was discussed in Section 11.6. To appreciate the
charge renormalization associated with vacuum polarization, consider now
the term W{¥X (a). Since V o €2, we can evidently interpret W¥X(a) in
terms of a change in e2. That is, the interaction without vacuum polar-
ization would be —e?/4r|x — x'|, say, and with vacuum polarization it is
changed by —C'V = Ce?/4x|x — x'| (to lowest order), and so equivalently
e? changes to (1~ C)e? because of vacuum polarization. Since the observed
charge must include the effect of vacuum polarization, we deduce that

etz)bs = (1 - C)egare ’ (11161)

where
oo [Tk 2 A
T3 ), EB 37 8
when we introduce a cutoff A as in the case of mass renormalization.

The methodology of charge renormalization is basically the same as that
of mass renormalization. Renormalization of e and m gives us finite, cutoff-
independent results involving observed charges and masses. We do not know
where the bare masses and charges come from or how to calculate them.
As the discussion in Section 9.5 suggests, we might expect to “see” the bare
charge at distances smaller than A, from an electron. But the correction
to epare is small even at extremely high energies (and therefore extremely
short distances): choosing A in (11.160) to be 50 BeV, we calculate C =
.018 and epare/€obs = 1.009. Thus, an understanding of epare requires an
understanding of how QED itself ought to be modified at extremely short
distances.!® Nevertheless, it is a very interesting possibility that in the limit
of infinite energies the interactions of charged particles are determined by
their bare charges.'® The vacuum polarization contribution to the Lamb
shift, for instance, is a consequence of the fact that the electron in the
2513 state spends more time near the nucleus than the 2p, /2 electron, and
consequently sees “more” of the bare charge of the nucleus and a stronger
Coulomb potential.

Although vacuum polarization is a 1% effect in the 2s; /2 — 2p1j2 Lamb
shift of hydrogen, it contributes about 90% of the analogous Lamb shift
in muonic helium (Petermann and Yamaguchi, 1959; Glauber, Rarita, and
Schwed, 1960). This can be understood from the smaller Bohr radii of
muonic atoms, which in turn is a consequence of the fact that the muon

(11.162)

m

15There are also vacuum polarization contributions from heavier virtual particle pairs
(muons, pions, etc.), but these are smaller than the electron—positron contributions be-
cause of the mass dependence of expressions such as (11.157).

18See, for instance, Gell-Mann and Low (1954).
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mass is about 207 times the mass of the electron. Vacuum polarization also
manifests itself in proton—proton scattering as a result of its modification
of the Coulomb potential (Foldy and Eriksen, 1954).

11.9 Radiation Reaction and the Vacuum
Field

Throughout this book much has been made of the fact that vacuum fluctua-
tions constitute the “Auctuation side” of the fluctuation—dissipation relation
between the vacuum and radiation reaction fields. The radiation reaction
and vacuum fields are two aspects of the same thing when it comes to phys-
ical interpretations of various QED processes including the Lamb shift, van
der Waals forces, and Casimir effects. The alternative physical interpreta-
tions afforded by the fluctuation—dissipation connection have been discussed
thus far only in the context of nonrelativistic theory. We now address these
interpretations in relativistic QED.

As in the nonrelativistic theory, physical interpretations are facilitated
by working in the Heisenberg picture. We begin by writing the Hamiltonian
(11.18) in terms of annihilation and creation operators for the Maxwell and
Dirac fields, using (10.153), (11.26), and (11.27) for these fields:

H = ZE,,[bI,b,.—d,,d}‘,]Jr%:ka;’uakA—ezzz—\/lﬁ
n A

m ki
x [Chins (0Bf:bnaiey + Oy (8], dl o,
+ Chyns (“K)a, bhba + Oy (-Ka) hd]
+ CA_py (K)bndmagy + Chon_ (K)dmdhay,
+ Ch iy (K] bndm
+ Chon-(-K)af, dmd]] + Ha . (11.163)

The first two terms correspond to the unperturbed Dirac and Maxwell
fields, respectively. In order to compare with the nonrelativistic theory of
Chapter 4, we use a discrete summation over modes for the Maxwell field.
The remaining terms, except for Hej, form the interaction —e [ Bzyla Ay
between the Dirac and transverse electromagnetic fields, with the coupling
constants Cp,,,4(K), etc. defined by (11.34). He is the electrostatic in-
teraction given by the last term of (11.25). This term, of course, can be
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written in a form involving b’s, d’s, and their adjoints, but for our purposes
here it will not be necessary to do so.

Using the fermion anticommutation relations {bp,, bl} = bmn, {bm, bn}
= 0, together with the fact that the &’s and b1’s commute with the equal-

time operators ay,, aL\, dpy, and d!,., we obtain straightforwardly the fol-
lowing Heisenberg equation of motion for b,(t):

: , . 1
by = —iEby+iey Y Tar [Cl'\+n+(k)bnakx + Ci\+n+(—k)aLAbn
n ka

+C;}_[+(k)dnak)‘ + C;}—l-}-(—k)a}.(xd" + Cé\+n—aLAdl

. 1
+Ci\+,,_(k)dlak'\] — 2ie Z z; —\/-é—; [C,.’),_,.,.,_ (k)dlbjn beay,
m,n A

+Cf’}1+n—(_k)a};)‘dlbrtnbl + Cr):l—n+(k)bmbldmakA
+ Chons (~K)af , babedn] — ilbe, Ha. (11.164)

Similarly

iy, = _ikak,\+\/’g_gzz[c,*,,+"+(—k)bjnbn
m n

b Chane (OBl + Oy (Wbt + Cy (W]
(11.165)

As in the nonrelativistic formulation of Chapter 4, we use the formal
solution of (11.165),

-4 ie
ag,(t) = ax,(0)e ’"+‘/__2_i22
: s
X [C,¢.+,,+(-k) /0 dt'b} ()b, ()€ k -0
t
+ C,);H_,,_(—k)/o dtlbjn(t')dl(t’)e‘k("")
t
¥ Chona(—19) [ ot (1)~
0

c> _ ‘ Ndl (1")et ' -1
+ Chone (1) [ dn()df(®) ]
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a(°)(t)+a(’)(t) (11.166)
(°)(t) = ak).(o)e_.kt (11.167)

in (11.164). When we then take expectation values for an initial state |¢))
in which there are no photons, so that a(o) C®)Y) = (¢|a(°)’f(t) =0, we find

of course that there are contributions only from the source part, a )(t) of
the field. We obtain, analogously to the nonrelativistic theory,

b)) = —iBelbe®) - T T 5O (0 ()
p m n ki

X / t dt’(b,,(t)bf,,(t’)b,,(t'))eik(t’—t)
+ Clps(K)Cn-(—K) / " 4t (by () ()} () HE O
+ (RO (R [ ()l (b ()=

t o
Oy (RO (H) [t (D (¢} )0
0
S (11.168)
where we write explicitly only the first few terms.

We can now apply the Markovian approximation in essentially the same
way as in Chapter 4. For instance, we make the approximation

I 't (O e = (L)
” /dt’ H(Em—Eatk)(t'=1)

~ (@ Oba(e) [16Ck = B+ E) = P
[fom (5a () — (61 ()85 ()0n (1)

) 1
X [ﬂ'&(k -E, + Em) - 1PkTE;-+—E,r:} s

(11.169)
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where we have used (4.98). The first term within the first bracket con-
tributes

e? Z Z Z E 2% Cl+p+ (k)C,’:‘+n+( k)épm (b (t))

p m n ka

x [wé(k-En+Em)-”’m]
= - zzz§2kc,+m+(k)c:,+,.+( k)(bn (1))
m n A

. 1
X [W&(k—En +Em)—lpm] (11.170)

to the second term on the right side of (11.168). Part of this term, the one
with n = £, contributes

2 Z ::; ok C[+m+(k)Cm+l+(—k)[7r6(k E¢+ En)
m ka

P )

S| Bk S Oy (IC g2 (R ACk = B+ E)
A=l

m](bl(t» (11.171)

in the mode continuum limit. In particular, the principal part term
contributes!?

Z /dakz ¢+m+(k) +_z+( k) bet)) (11.172)

to (11.168), i.e.,

(be(t)) = —i

x (be(t)) + ... . (11.173)

El = — Z/ d3k Z +m+(k) 4j+k( k)

The second term in brackets represents a shift in the energy F,. Comparison
with (11.47) shows that this shift is just the contribution to WX (£) from

17 As usual the integrals are to be understood as Cauchy principal parts.
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positive-energy intermediate states. The delta function part of (11.171)
gives similarly a contribution to the spontaneous emission rate from state
|).

To get the full level shifts and spontaneous decay rates we must, of
course, show that most of the terms not explicitly written in (11.172) ei-
ther cancel or are negligible.’® This is straightforward but cumbersome.
The fact that we obtain the correct radiative shifts and decay rates, when
we collect all the terms, shows that the Markovian (or Weisskopf-Wigner)
approximation gives the same level shifts and widths as second-order per-
turbation theory, just as in the nonrelativistic theory of Chapter 4.

What is of interest here, however, is that the contribution to the level
shift and width from the interaction —e [ d3z¢7a - A1 with the transverse
electromagnetic field comes entirely from the source part of the field. Nor-
mal ordering of the field operators, in the calculation just outlined, removes
all explicit contributions from the vacuum electromagnetic field. Thus the
Lamb shift, apart from the electrostatic vacuum polarization contribution,
is attributable to radiation reaction, just as in the nonrelativistic theory.

However, we could equally well have started by writing the Heisenberg
equation (11.164) in the antinormally ordered form

. , , 1
b= — iEbe+ic. Y ors [Chns (Waabn + Clms(—K)bnal
n ki
+  CMiy(Kag, dn + ... ] —ibe, Hel (11.174)

in which the photon annihilation operators are at the extreme left and the
photon creation operators are at the extreme right. Using the formal solu-
tion of this equation, and the corresponding Heisenberg equation for d,,, we
can evaluate the righthand side of (11.174) in the Markovian approximation
and then take expectation values for a state of no photons. When this is

done we obtain explicit “vacuum field” contributions (ak’\(O)aLA(O)) = 1.
The entire procedure is exactly analogous to the nonrelativistic calculation
of Section 4.11, and we draw the same conclusion: the Lamb shift, for in-
stance, is attributable to either the source (radiation reaction) or vacuum
field, or some combination of the two, depending on the ordering chosen
for the commuting (equal-time) electron, positron, and photon annihilation
and creation operators.!®

18The “negligible” terms are those that oscillate at frequencies different from E,; and
are ignorahle in a rotating-wave approximation. They are essentially the “Landau terms”
mentioned briefly in Section 4.16.

19T the relativistic theory, of course, we have also the electrostatic vacuum polarization

contribution attributable to the Dirac vacuum rather than the electromagnetic vacuum.
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11.10 Discussion

!n the final section of the preceding chapter it was noted that Oppenheimer
in 1930 found that the coupling of an atomic electron to the quantized
electromagnetic field led to an infinite energy shift. A similar result was
found at about the same time by Weisskopf and Wigner in their work on
the natural lineshape. Weisskopf (1972) recalls that he

... tried to convince Wigner that the integral could be made to
vanish. Wigner said: “No, no, it is infinite.” I didn’t believe him, but
he was right, of course. This paper, part of which became my thesis,
was the first paper in which divergent integrals appeared. They have
not yet been resolved; they are still there after 40 years. One ought
to be ashamed of it.

The infinities are still with us after 60 years now.

Although the infinite self-energy calculated for a bound (or free) electron
may be considered shameful, the extraction of finite numbers in fantastic
agreement with experiment is also one of the great triumphs of twentieth-
century science. Consider, for instance, the degree of agreement between
theory and experiment for the anomalous magnetic moment of the electron
(Section 3.13).

Whatever one thinks of the divergences in quantum field theory, renor-
malization seems logically necessary in order to avoid “double counting” of
electromagnetic mass, for instance: if the electron mass in the Hamiltonian
is the observed mass, then the electromagnetic mass calculated when the
electron is coupled to the electromagnetic field had better be subtracted
away, for it is already part of the observed mass. (See the discussion in
Section 3.5 concerning the nonrelativistic theory of electromagnetic mass
and in Section 11.6 for the relativistic theory.) In other words, renormaliza:
tion would be required even if the eleciromagnetic mass were finite. Indeed
renormalization is required even in the classical theory of radiation reac-
tion. The need for renormalization means in effect that a knowledge of the
actual (presumably finite!) electromagnetic mass is not required for the
calculation of observable phenomena such as the Lamb shift. Moreover, as
noted near the end of Section 11.6, it is not altogether clear that the di-
vergence of the electromagnetic mass calculated in low-order perturbation
theory is in fact a real difficulty of QED.

In this chapter we have demonstrated a result that was already pre-
sumed to be true in earlier, nonrelativistic descriptions: as a consequence

In otl-\er words, the “Lamb shift” in this statement refers to the shift without the vacuum
polarization contribution.
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of the negative-energy states of relativistic theory, an electron is effectively
spread out over a distance on the order of its Compton wavelength. This
leads to a weaker divergence — logarithmic rather than linear - of the elec-
tron self-energy in relativistic QED. It might at first be thought that this
weaker divergence is simply a consequence of the retardation factors eik-x
in the relativistic theory; retardation in the nonrelativistic theory, after all,
also leads to a reduced divergence (Section 3.9). However, this is not the
case. The Green function analogous to Gy, (Section 3.9) in relativistic the-
ory is (En — @ -p — fm — V — wy) as opposed to (En — p2/2m -V —wy).
The effect of retardation, then, is not to give an extra factor of k% in a
denominator, as in (3.57), but only another term linear in k. The loga-
rithmic divergence of ém in relativistic theory is attributable instead to
virtual electron—positron pairs causing an effective spreading of the charge
distribution of the point electron.

In the calculation of the Lamb shift it is also necessary to renormalize
the electron charge, an effect that has little to do with electromagnetic field
quantization. Charge renormalization is a consequence of the polarization
of the Dirac vacuum by the electron. As noted in Section 9.4, an extremely
strong electrostatic field can produce real electron—positron pairs. The
treatment of vacuum polarization in this chapter implicitly assumes that
the field is small compared with the critical value Ec = m?¢c3/eh for pair
production?® (Section 9.4).

Virtual creation of electron—positron pairs results in effect in a coupling
of the electromagnetic field to itself. For arbitrarily strong but slowly vary-
ing fields, and in particular for frequencies w << m, the self-interaction
energy can be calculated to lowest order in «, as first done by Heisenberg
and Euler (1936). The Heisenberg-Euler Lagrangian density is (Schwinger
1951)

2 1

Iy (B2 -B*)?+7(E-B)* +..], (11.175)

L= %(E2 -B)+

where we write the first two terms of an expansion involving o/ E2,.. Such a
Lagrangian describes various QED phenomena associated with an effective
nonlinear refractive index of the vacuum, including photon-photon scatter-
ing and “photon splitting.” Because of the extremely high field strengths
required for such phenomena, however, there is still no prospect of ever
observing them (Bialynicka-Birula and Bialynicki-Birula, 1970).

20Fven at a distance of a Compton wavelength from an electron the electric field
strength is about 1/137 times this critical field. Recall also the discussion at the end of
Section 9.4.
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The Heisenberg-Euler Lagrangian can also be used to describe the effect
on an external field of the modification of the vacuum electromagnetic field
by parallel mirrors (Barton, 1990). Any physical effects of this modification
are too small to be measurable.

In this chapter we have shown, mostly following Kroll and Lamb (1949)
and French and Weisskopf (1949), how a finite level shift can be obtained in
spite of the sort of divergence first obtained by Weisskopf and Wigner and
Oppenheimer. The kinds of calculations summarized in this chapter are
seldom done now; they have long since been replaced mainly by covariant
perturbation theory and Feynman diagrams, as described in the following
chapter. However, the diagrammatic methods essentially just reproduce
the results obtained here in the old-fashioned way. In other words, the
diagrammatic techniques do not represent a new physical theory, but “just”

a more convenient way of doing the calculations and renormalizing. We
now turn to these methods.
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Chapter 12

Feynman Diagrams

The theories about the rest of physics are very similar to the
theory of quantum electrodynamics: they all involve the interaction
of spin 1/2 objects (like electrons and quarks) with spin 1 objects
(like photons, gluons, or W’s) within a framework of amplitudes by
which the probability of an event is the square of the length of an ar-
row. Why are all the theories of physics so similar in their structure?

— Richard P. Feynman (1985)

12.1 Introduction

Following the Second World War, relativistically covariant formulations of
quantum electrodynamics were developed by Tomonaga, Schwinger, Feyn-
man, and Dyson. These formulations involved techniques for the subtrac-
tion of divergences in relativistically covariant ways, and the subtractions
were shown to be equivalent to mass and charge renormalization. In par-
ticular, the diagrammatic methods developed by Feynman (1949a,b, 1950),
and elucidated by Dyson, led to a simplification in the theory for higher
order processes and a proof of renormalizability. The equivalence of the
different approaches was shown by Dyson (1949a,b).!

Feynman’s way was intuitive and did not require quantum field theory.
After Dyson demonstrated the equivalence of Feynman’s approach to the
methods of quantum field theory, Wick (1950) showed how Feynman’s dia-
grams could be obtained from an S-matrix expansion by operator algebraic
methods.

1The reprint volume edited by Schwinger {(1958) includes some of the historic papers
of QED.
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In this chapter we show how the diagrammatic methods of QED can be
deduced from quantum field theory. We also describe the original and much
simpler approach of Feynman’s. We begin by reviewing first the interaction
picture in general quantum theory, and then the S matrix and its iterative
expansion in perturbation theory.

12.2 The Interaction Picture

The Schrodinger equation,
.0
i ¥() = HI¥(t) = (Ho + H)[¥(1)), (12.1)

describes the evolution in time of the state vector |¥(t)) of a system with
Hamiltonian H, which for systems of interest to us is an “unperturbed”
part Hy plus a perturbed or “interaction” part Hy. The (unitary) time
evolution operator U(t, o) is defined such that

|®(2)) = U(2,t0)[¥(to)), (12.2)

where [¥(to)) is the state vector at some initial time ¢o. It follows from the
Schrodinger equation that

i%U(t,to) = HU(t, o), (12.3)

and, from (12.2), U(to,t0) = 1, the unit operator.

In earlier chapters we found it useful to work in the Heisenberg pic-
ture, where the state vector stays fixed at |¥(fo)) while operators evolve
in time. A (time-independent) Schrédinger operator As with matrix ele-
ments (¥, ()| As|¥2(t)) will have matrix elements (W1 (to)| A (t)|¥2(to)) in
the Heisenberg picture. In order for these to be equal,

(W, (1)U (2, t0) AsU (2, 10) | ¥2(20))
(%1 (o) | An () ¥a(to)), (12.4)

(¥1(t)|As|¥2(2))

or Ag(t) = Ut(t,to)AsU(t,to). Equation (12.3) then implies the Heisen-
berg equation of motion

i%AH(t) = [Ax(t), H] (12.5)

for operators in the Heisenberg picture.
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. For reasons described later, it will be convenient in this chapter to work
in the interaction picture. In this representation of quantum theory, both
the state vectors and the operators evolve in time. To introduce this p’icture
we write the time evolution operator U(t,o) defined by (12.2) and (12.3)
in the form -
U(t,t()) = U()(t,to)‘u(t,to), (126)

where Uy(t,tp), defined by

.0 '
1&'Uo(t,t0) = HoUo(t,to) (127)

and Uy(t,t9) = 1, is the time evolution o
, perator governed by th -
turbed Hamiltonian: s Y e e

Uo(t, to) = e~ iHolt=ta) (12.8)
From equations (12.3), (12.6), and (12.7),
.0Uy ., Ou ... Ou
’l—at—u-‘-onE =H0Uo“+iU05t- = (H0+H1)U0u (129)
or
.Ou t
15{ = U, (t,to)H[Uo(t,to)u(t) = h;(t)u, (1210)

yvith u(to,t0) = 1. The interaction Hamiltonian in the interaction picture
is

hy(t) = UL (¢, to) H1Us(t, to). (12.11)
We define interaction-picture operators more generally by

Ar(t) = Ul (¢, t0) AsUs(t, to). (12.12)
Thus a matrix element in the Schrodinger picture can be written
(W1 (to) ul 2, 0)U] (1, 80) As (1, o)
X u(t,to)l‘l’z(to))

(W1 (to)|ul (1, to) Ar (8)u(t, o) W5 (t0))
($1()|Ar(t)|$2(2)), (12.13)

where the state vector in the interaction picture is defined by

(W1(t)|As|¥2(2))

(1)) = u(t, to)¥(t0)) = UJ (2, to)|W(2)). (12.14)
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Note that a state vector in the interaction picture evolves in time according
to the equation

i%w:(t)) = i(zt—ul‘l’(to)) = hi(t)u(t, to)[¥(to)) = br(®)¥().  (12.15)

Equation (12.10) has the formal solution
t

u(t,to) = 1-1i / dt'hr(t)u(t’, o)
to

t t 129
14 (—9) dtlh,(t1)+(—i)2/ dtlhI(tl)/t dtzhr(t2)
to to o

t ty i3
+(—i)3/ dtlh,(tl)/ dtzhy(t2) dtshr(ta) + ...,
[} to to
t (12.16)

which is sometimes called the Dyson ezpansion. Before continuing w%th our
formal discussion, let us pause to recall a simple but impc?rtant 'app.hcatlon
of this expansion. Suppose that at t = 0 we have a syster¥1 in the ?mtlal stat:e
|¥) = |i), an eigenstate of Ho with eigfenvalue E;: Holi) ='E‘.‘|z). 'Wha; 1:
the probability, if a periodic perturbation Hy = 2V coswt is applied, t. 12
the system will be found in the state | f) at the time ¢? The probability
amplitude for the transition is
agi(t) (F1¥() = (FIU(,0)li) = (FIUo(¢, 0)u(t, 0)}3)

e ErH(flu(t, 0)14), (12.17)
and we approximate it in lowest order perturbation theory by retaining
only the first two terms of (12.16), assuming {f|i) = 0:

apte) = et [ " dty (FIhr (1))

n

t
= —2ie"'Ert / dtl(flUg(tl,O)VUo(tl,O)]i)coswtl
0
t 3
= —2ie"E!‘/ dt, (fle'Hot Ve Hotr|i) coswt,
0

3
= =2ie ' Ert(fIV i) / dt e Br =Bt coswity
0

n%(E] —-E; +w)t
1(E; - Ei +w)

. si
= B IV [ B

RS (Gl “’)t] . (12.18) °

$(E; - Ei —w)
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For upward, absorptive transitions, E; > E; and sin[}(E; — E;+w)t)/[Ef —
E;+w)] has many small-amplitude oscillations over a time ¢t >> E r—FEi+w
and may be ignored compared with sin[(E; — E; — w)t]/ [E; — E; — w],
which in fact will grow with ¢ if the resonance condition E;-E =uwis
satisfied. We therefore approximate the transition probability by

2Sin2 %(Ej —FE; — w)t
[3(Ef — B: - w)]?
This leads in the familiar way to the Fermi golden rule for the transition

rate when we suppose there is a continuum of possible final states with
density p(Ey). Thus, from the delta-function property of sin? zt /z?,

las@F [ dEsp(Eplagi(o)

lasi ()1 = [(FIV13)] (12.19)

sin? 1 — L —w
= |[(fIVIi)? / dE;p(Ey) [%(;;(,Ei E.-E— w)]z)t

= {AVI)Pp(Es = Ei +w)2mt (12.20)

or
d 27 .
Rpi = —lag(t) = 5 (VI p(Ey = B + hw) | (12.21)

where we reinstate A in order to recover the conventional expression of
Fermi’s golden rule for the transition rate.

There is a small point worth mentioning about this result, simple and
well-known though it is. Whereas the energy conservation condition E; =
E; + hw is naturally interpretable in terms of the absorption of a photon
of energy hw, when the perturbation results from the coupling of our sys-
tem with the electromagnetic field, we have derived it without quantizing
the field. In fact many phenomena conventionally associated with photons,
such as the photoelectric effect, can be adequately explained without in-
voking photons, i.e., without field quantization (Scully and Sargent, 1972).
We can similarly derive “n-photon” absorption (and stimulated emission)
rates without field quantization.? Of course the classical treatment of the
field will ultimately fail even for absorption and stimulated emission pro-
cesses. For instance, it predicts that a field of exactly one photon has a
nonvanishing probability of exciting two detectors.3

2That the stimulated emission rate can be obtained without field quantization was
noted by P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 361 (1930). Spontaneous emission,
however, demands field quantization for an explanation of some of its essential features.
See Section 4.15 and Milonni (1976). Expressions for n-photon absorption rates are
derived in many places; see, for instance, P. W. Milonni and B. Sundaram, Progress in
Optics, Vol. 31, ed. E. Wolf (Elsevier, Amsterdam, 1993).

3See, for instance, Milonni (1984).
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12.3 The S Matrix: Perturbation Theory

We observe that each term in the series (12.16) is symmetric in t1,%2,...,1n

and write u(t) = u(t, —o0) in the equivalent form*

u(t) = gg_?z'):[w dt, [oo dtz...[w dtnPhI(tn)...hi(tz)hl(tl).

(12.22)
Here ty — —oo formally and the “chronological product” P involves ar-
rangement of the operators in the order of increasing time from right to
left, i.e., tn > tho1 > ... > 12 > 11,
Probability amplitudes for states of the system at ¢ = oo are determined
by the S matrix, which is defined as u(0o). Replacing hs(t;) in (12.22) by
the interaction Hamiltonian density hy(t;), we write

S= i(__nf!)_n/d“xx/d4z2--'/d%"PhI(-’En)---hl(rz)hl(”l)’ (12.23)

nz=0

where the integrations extend over all space and time.

The S matrix element Sy; = (f|u(co)|i) is presumably the probability
amplitude for the transition from an initial, noninteracting “bare” state |i)
to a final “bare” state |f). However, things are hardly quite so simple, as
even a “noninteracting” electron, say, still has a self-interaction associated
with radiation reaction and electromagnetic mass, and the electron charge is
itself due in part to the polarization of the vacuum by the electron. In other
words, the electron is always interacting with the vacuum electromagnetic
and Dirac fields, if nothing else. We will ignore such subtleties, which in
fact pose no real difficulties, and proceed with our goal of seeing where the
Feynman diagrams come from and why they are useful.

Equation (12.23) is a perturbation series in the interaction hy. The
n =0 term, S = 1, contributes (f|i) = 0 to the transition amplitude for
orthogonal initial and final states. The first-order term,

Ss(1) — —i/d4:ch1(x), (12.24)

contributes

s = / 2 (flhr(2)li) - (12.25)

4This is easily shown for the n = 2 term, for example, by integrating by parts and
keeping track of the order of the operatars h;(t1) and hi(t2).
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The interacti_on Hamiltonian density appropriate to QED can be read off
from (11.5): in the Lorentz gauge,

hi(z) = eP(2)1u¥(2) A% (2) = ef(z) M) P(=), (12.26)
whereas in the Coulomb gauge, from (11.25),

2
hi(z) = —epl(z)a- Ay(z) + = / 43,2 1P(y, 1)
87 Ix -yl
- 2
= —eP(2)Me)y(z) + — / a3y 2P, 1) (12.27)
8w x—y|
where A is transverse. We will work in the Lorentz gauge.

. Consider the example of electron scattering from the Coulomb potential
A%(z) = —Ze/4x|x]|, in which case (12.25) becomes

SN = iza / d*z( f|'1/7(z)7°¢(z)|i)§T . (12.28)

The initial and ﬁnz?,l states are both states of one electron and no positrons
a.l.’ld so the nonvanishing contributions to (12.28) involve an electron anni-’
hilation operator from ¥(z) and an electron creation operator from ¥(z),

Whﬁfe 1/)(::). and P(z) = 1J)t(z)7° are defined by (10.90) and (10.91). De-
noting the initial electron momentum and spin by p; and s;, we have®

Y@ = P s:) = Cip()bl (5:)]0)

d®p m 2 . ;
= G [ G g bW @)=l )
o [ Lo ms i i t
; (21)3'5121" (P)e™*7= {b5(p), b] () }10)
= Ciu(p;)ePi= (12.29)

yvhe.re we have used the fermion anticommutator (10.92). C; is a normal-
ization constant determined by (i|i) = 1:

ICH 201836 (91)10) = IC12(01{8:(p:), b] ()} 0)
E; E;
= |Cil*(27)3 =63(0) = |C:i]P=2V, (12.30)
m m
where V is a volume defined by taking p — 0 in the representation 63!2! =

(‘!/2‘1r)3fd"’ze"p'x of the delta function. Thus we take C; = \/m/E;V.
Similarly, for a final state of momentum p; and spin s; (Figure 12.1),

The spin is labelled by the subscript i on b;r and by the superscript i on u'.
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Figure 12.1: Scattering of an electron by a Coulomb potential.

(FIP(z) = Cyw (p)e = = E;nvﬁf(pf)e"’ " (12.31)

. _ [ 4 of 0,4 i(ps P-)r
SI" = ia E; Ef /d zw (ps )y u (pi)e’ x|
— 0 3 e—’(pl_pi)'x
. 1 3 I —————eeeer
= iZa E'E —u (pr)r'u (Pz)/d x|

X /dte‘(E"E‘)'

Then

= 4rmiZa

i 1 i(E;—-E;)t
ﬂf(pf)')lo’u (p')W/dte( 7 ) )
(12.32)

EE

where q = py — pi, and

m? @ (pr)y" v (i)

(12.33)
E;EfV? |qf*

2
/ dtci(E!—Ei)‘

The integration over t extends formally from —ooc to oo. We can write

2
‘S}}) = (41rZa)2

The S Matrix: Perturbation Theory 435

instead

2
‘/ dtel'(Ef—E,')t

; 2
for large T'. The transition rate ,S'_(f:)l /T is therefore

2 .
/T/2 dtet'(E,—E.‘)t — s"lz %(Ef - E‘)T
-T/2 [3(Ef - E3))?

g 21|'T6(Ef - E,') (12.34)

2 —f 0,,6(r.\[2
M _ a_m”_ 1 [@(ps )70 (pi)] o
Ry =2n(47Za) E, V7 a7 8(Ey — Ey), (12.35)

or, when we sum over possible final momentum states,

R = [Y& R =v / P3dpsdQy
(2m)® )3 T @n® Ry
11 [@ (pp )y u ()2
- 2.2 2 2 = f _ .
= 4Z°a*m /dpjdﬂfpf E.'E! % |q|4 6(Ef E.).
(12.36)

The incident flux is |v;|/V = |p;|/E:V, which leads us to the definition
of the differential scattering cross section:

do dp;p pil \ 7 [@ (py)7°u (i)
4Zzazm2 — A
= TaE Iu’(pf)7°u (p:) I, (12.37)

where we have used the fact that dpyp; = dEJE t, which follows trivially
from E; = ‘/pi + m2.

If the polarization of the final state is not observed, and the incident
electron is equally likely to have spin up or down, then the experimentally

relevant cross section is obtained as usual by averaging over initial states
and summing over final states:

do 4Z%a i
E - 2|q|4 Z luf(pf)70u (pt)lz (1238)

3i,8;7

'The evaluation of the sum is a straightforward exercise facilitated by the
use of “trace theorems.” We simply record the result (Bjorken and Drell,
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1964):

do _ 2o’ (1 _ B%sin? 9—) , (12.39)
dQ ~ 462|p;|?sin*(6/2) 2

i i = |pi|/E; is is the well-known Mott
with |q|2 = 4|p|*sin?(6/2) and B = |p:|/E;. This is nown Mot
cross l.:a‘ction for Rutherford scattering, which in the nonrelativistic limit
B << 1 reduces to the (classical) Rutherford formula,

2
do 2 B, __Za (12.40)
dQ ~ 4sin*(8/2) Ipil*  4m?visin®(6/2)

12.4 Second Order

The second-order term in the expansion (12.23) is
s = _% / iz, / d*z5 Phy(z2)h1(z1)

_f;/d4x1/d‘zzP—llj(zz)A(zg)zp(zz)E(zI)A(zl),/,(zl)_
(12.41)

Now the advantage of working in the interaction picture beco'mes. clear.5 In
the interaction picture the operators ¥(z) and A(a:) evolve in time as un-
perturbed operators satisfying equations of mf)tlon for free (unperturbeig)
fields. In particular, they can be expanded in terms of l?are .(free-ﬁe )
annihilation and creation operators acting on bare states, with time depen-
dence of the type ax(t) = ax(0)e~*Ex!. The Dirac operators commute for
all times with Maxwell field operators. Thus

50 = - [ dtan [ dieaPPrpenTear dedAue) A (@)

2 (12.42)

It will be convenient to replace the chronological product P by the

time-ordering operator T introduced in Section 10:9. For the (boson) ele}f—

tromagnetic field operators A(z) the two are equ.lvalent, whereas for.t e

(fermion) operators $(z) there is at most a sign <‘hffergnce. Howe‘ver,' since
the v(z) operators occur in pairs in (12.42), no sign difference arises:

@ = % [ = [ B e B o)
X A#(Z2)AV($1). (1243)

6The advantages of the interaction representation were exploited by Tomonaga and
Schwinger in their formulations of QED.
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At this point we can plug in the expansions of the ¢ and A operators in
terms of annthilation and creation operators and evaluate matrix elements
for any initial and final states of the Dirac and Maxwell fields. A great
simplification can be realized, however, by taking a different approach, the
one that leads to Feynman diagrams.

The basic idea is to use normally ordered field operators, where creation
operators appear to the left of annihilation operators. The vacuum expec-
tation value of a normally ordered product vanishes, since a]0) = (0|a'r =0,
where a and al are annihilation and creation operators for either bosons
or fermions. Furthermore a matrix element of a normally ordered product
does not involve emission and reabsorption of “intermediate” particles that

arise from a term like aa! in a nonnormal product. For these reasons, nor-
mal ordering of annihilation and creation operators simplifies the evaluation
of matrix elements.

Therefore, rather than evaluating the matrix elements of (12.43) di-
rectly, taking the operators in the order in which they appear, we now
want to take advantage of the properties of normally ordered products.
That is, we want to express the time-ordered products in (12.43) in terms
of normally ordered products.

Consider first the time-ordered product TA,(z2)A,(x;). For t; > t;
this is, by definition, A,(z2)A,(z;). Now
A(z) = AD(z) + AC)(2), (12.44)

where A(+)(z) and A(~)(z) are respectively the annihilation and creation
parts of A(z). (Sections 3.11, 7.4, and 10.8) Then

Au(z2)A, (z1) = AP (23)AH)(21) + AGH (22)AS (21)
+ A (22) AGH (21) + A (22) AS ) (21)
= A (22)ASD) (21) + A (22) AS) (24)
+ AL (21) AGH (22) + A (22) ASH (21)
+ [A(D) (22), AT (21))]
= N[Au(z2)Au(21)] + [AGP (22), AS(21)](12.45)

where N[A,(z2)A,(z1)] is the normally ordered product of A,(z;) and

A,(z1). Since AS,+)(:1:2)|0) = 0, we can write the commutator equivalently
as a vacuum expectation value:

[AGH (z2), AL )(21)) = (014CH) (22) AS) (1) 0)
= (0]Au(z2)Au(21)]0) , (12.46)
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which is a simple generalization of [a,at] = (0|aa1|0) = (0|(a + at)(a +
at)|0). Therefore

Au(z2)Au(21) = N[Au(z2)Au(21)] + (0| Au(z2) Au(21)I0)  (12.47)
for t; > t;, and similarly, for ¢; > t3, the time-ordered product is
Au(21) 4, (22) = N[Au(22) A, (2] + O1AL (1) Au(e2)[0) . (12.48)
These twb equations may be combined to give
TAu(22)Au(21) = N[Au(22) A, (21)) + (01T Au(z2) Ay (2)[0) . (1249)

But the vacuum expectation value on the right is just i times Dy, (2, z1),
the photon propagator of Section 10.9, from which

TAu(z2)As(21) = N[Au(22)A, (1)) + iDyy (22, 21). (12.50)

For the Dirac field we write, analogously to (12.44),
¥(z) = ¥ (@) + (=), (12.51)

where the annihilation and creation parts are respectively

d3p m - i ui e—ip~z .
W@ = [ GEEIMEE, (25
Y@ = [ 22 2idf'(za)v‘oo)e""x. (12.53)
(2P EZ "
Similarly [equation (10.91)]
P=2) = 7P (2) + 77 @), (12.54)
7P _ifp_ﬂz.-ﬁie-i~z .
7@ = [ GRp L ATeT, (25
2
0= [Gmplleree:, 2

and, from the fermion algebra of the electron annihilation and creation
operators,

(¥9(2),957(2)) = OI¥E) (@)F5 ) (2)10) = (Ol9a(2)¥5(=)10), (12.57)
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F2P(2), 957"} = (OB ()85 (2)10) = (0FF a(2)5(2)0). (12.58)

All other anticommutators of the fields (12.52), (12.53), (12.55), and
(12.56) vanish. From these properties it follows easily that

TYa(z2)Pp(21) Nlba(22)bp(21)] + (01T a(22)P5(21)|0)
= N[i/’a(xz)%(zl)] +1Sp(Z2,%1)ap , (12.59)

where Sp(z3, ;) is the Feynman propagator defined by (10.193). Here

Nba(22)85(21)] = 9P ()85 (21) + 95 (22)B5 (1)

+ 90 @) (1) = B (2960 (22).
(12.60)

Note the similarity between (12.50) and (12.59). Each involves a field prop-
agator, the photon propagator in (12.50) and the Feynman (electron) prop-
agator in (12.59). Note also the minus sign in the last term of (12.60),
which is a consequence of the fermion character of the Dirac field, i.e.,
NI ()5 (2] = ~N B (2096 (2)] = =557 (20)96P ().

Writing (12.43) in a form in which the components of ¥ and V¥ are
indicated,

e?

S;?) = 5 75[,7(‘;,[5,/d“zl/d“xz(flTEa(xz)W(:cz)
X Yo (21)9p (21) A (22) A (22)i) (12.61)

it is obvious that the normal ordering of the ¥ and ¥ operators will lead
to the appearance of the Feynman propagator, as in (12.59). Obvious too
1s the fact that converting the time-ordered product to a form involving
normally ordered products is messy even in second order. Before showing
how to reduce the labor required to write time-ordered products in terms
of normal-ordered products, let us consider two such normal-ordered con-
stituents of S;?) .

12.5 Example: Compton Scattering

In the course of rewriting the time-ordered product in (12.61) in a form
involving normal-ordered products, we will pick up a term

297 (22)Sr (23, 2, )par¥5T (21) N [Au(22) A (21)), (12.62)
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resulting from the first term of (12.49a) and the second term of (12.59).
The factor 2 arises because we can “contract” either PYp(z2) o (1) oF
P, (22)¥p (1) in (12.61), each contraction giving rise to a Feynman prop-
agator S, and their contributions to (12.61) are equal. This results in the
contribution

S}?(C) = —‘iez‘)’zﬂ‘)’;:p:/d4$1/d4225F(12,31)ﬁa'

% (0 (22850 (21 NAu(z2) A (=)l (12.63)

to the second-order S-matrix element between initial and final states )

and |f). S.(,f)(C) describes a process in which an electron is annihilated at
z; and an electron is created at z;. The operator N [Au(z2)AL(21)] will
annihilate or create a photon at z; and create or annihilate a photon at z.

In other words, S(::)(C) describes Compton scattering, where
|5} = Ips, sis ki, M) (12.64)

is a state with an electron of momentum p; and spin s; and a photon
occupying the mode (k;, A;), and similarly

1f) = |ps,spiks, As) - (12.65)

The nonvanishing matrix elements of N[A,(z2)A,(z1)] result from
A&f)(zz)As"’)(zl) and Af,—)(:cl)As;")(zg), so that

Sﬁ’(C) = —i¢? /d431/d41725F(tz,$1)

x [(1AD@)F 7 @ Se(en, ay ¥ @) AP @)1
b (FAD T @7 Seea, 217" O @) AP (22)19)]

= 5@ (c1) + 5P (C2). (12.66)

We can represent these two amplitudes by the Feynman diagrams shown in
Figure 12.2. The diagram C1 represents the process in which the incident
electron (solid line) and photon (wavy line) are annihilated at z,, and
the final electron and photon are both created at z;. Between z; and
7, the electron propagates with amplitude determined by the propagator
Sp(z2,71). The diagram C2 represents the process in which the incident
photon is annihilated at z2 and the final photon is created at z;.
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‘Figure 12.2: Feynman diagrams for the two amplitudes C1 and C2 contribut-
ing to Compton scattering.

o Consider in a bit more detail the amplitude for the process C1. For the
initial state |5) given by (12.64),

2
(+) (+) ) — dSP m —ip-T
Y (z) AT (21)]8) = _(27r)3fj2_;b(p’si)“(l):5j)€ Pz
"'"——dak 1 > —ik-z
X (2,)32—w';§a(k, Ae e, (k, A)|pi, 5i; ki, A)

3

dPp m ¢ - Br 1
= C'- ———— . —ip-T
/ (27‘,)3 E ; u(p; 85 )6 1 -——(27r)3 —2“”‘ ;J e,,(k, A)

x e~*=1p(p, 5 )bT (s, s:)a(k, N)al (ki A:)]0)
o[ B m cipey [ 1§
B A P oo L

A=0

x e~ %=1 {b(p, 5;), b (pi, si)Ha(k, 1), a' (i, X)) 0)
= Ciu(pi, si)es(ki, Ni)e " Pitkd=r (12.67)

where we now write u(p, s;) and b(p, s;) instead of w’ (p) and b;(p). C; is
a normalization factor chosen so that (ifi) = 1:

IC:I2(01{b(ps, 3:), b} (i, 8:) Ha(ks, A, at (i, A0))10)
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. E".
= |C;|2(21r)3%63(0)(21r)32k,-63(0) = [Gi* 22k (12.68)
or C; = (m/2k;E;)'/? [V, analogous to (12.30). Similarly
(FIAS) (22)8 ) (23) = Cra(py, sp)eulky, Ap)e®rHE0=2 | (12.69)

with C; = (m/2k;E;)'/?/V. Then

1/2
u ky, A
v 4k.-k,E.-E,] WPy, 57)9 (ks> A1)

X [/d4-’l71/d4-’523F(:L'2,21)6‘(P1+kf)"’e“("‘+"‘)’”l]
x ¢ (ki, A)u(pi, si) - (12.70)

) 2
e

The integration over z; and 3 is easily carried out using the expression
(10.198) for Sr(z2,z1):

/‘ﬂxl/d4”26i("’+k’)'”’€—i(”‘+k‘)"‘SF(zz,Il)

4
= /d“:cl/d“:cge‘(”f""‘I)"’e"‘(”"““)"'/ d p_e-ir(zz—zl)sp(p)

(2m)*

(2n)* [ a*98%(0s + ks = P50+ ki = P)SF (0)
(27)*6*(pi + ki — py — k) Sr(pi + ki)

1
= 46%(pi + ki — py — 12.71
e (21)6(p1+k1 pf kf)#'_*_yi_m_*_ie) ( )
so that
Sl = —i@2r)6'(mi+ki—ps -k o L
i - PerE TP T ROYE Gk, BBy
- gk, Ap)d (ki) A)
. 5;). 12.72
x“(pfvsf) "i+’/i—m+i€ u(p,,s.) ( )

The amplitude S;%)(C?) has a similar expression, except that the ex-
ponentials in (12.70) are replaced by ¢'(Ps—¥:)%2 and e~i(Pi=ks) 21 This
leads to the same delta function as in (12.72), but with §, 4+ ¥, replaced by

f.'_’/;:
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Py I(\/\'r\;f\/
Pi+ki A
‘\/\V\/{A
P, T
C1 c2

Figure 12.3: Momentum—space Feynman diagrams for the two amplitudes C1
and C2 contributing to Compton scattering.

S(2)(C2) — —-i(27r)464( -k — —k )62 L 1/2
i B P& =P = MYE | Tk, B E,
ks, A k;, A
xﬂ(p!,s!)cf( £:A0)4( )U(p;,s;). (12.73)

l‘i_I/j_m‘*‘if

The Fourier transformation (12.71) converts the space—time propagator
Sr(z2,21) to the momentum-space propagator Sr(p), and we can draw
momentum-space Feynman diagrams representing (12.72) and (12.73) (Fig-
ure 12.3). The calculation of the differential scattering cross section for
Compton scattering from the absolute square of the sum of (12.72) and
(12.73) is given in Bjorken and Drell (1964), for instance, and leads to the
Klein-Nishina formula

2 2
j—g = (2—{) [chi + ,’:—f — sin? 0] (12.74)
when we sum over final electron spins and photon polarizations and average
over initial spins and polarizations. Here @ is the scattering angle and

" 14 (ki/m)(1 ~ cosf) ’
which implies the familiar Compton shift AX = (h/mc)(1 — cos8) in the

wavelength of the scattered radiation. When integrated over all solid an-
gles to give the total scattering cross section, (12.74) yields the Thomson

ky

(12.75)
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cross section (8x/3)a?/m? in the low-energy limit in which k;/m — 0, and
(7a?/k;m)log(2k;/m) + 1/2 in the high-energy limit k;/m >> 1 of very
short wavelengths.

12.6 Electron Self-Energy

We have considered only one contribution to (12.43) arising from the normal
ordering of the time-ordered product, namely the term (12.62) for Compton
scattering. Another contribution appears from the replacement in (12.62)
of the normal product N[A,(z2)A,(z1)] by the second term of (12.50), the
photon propagator iDy, (22, 21):

25 (22)Sr (23, 21)pa 95T (21)i Dy (22, 71)- (12.76)
This gives the S-matrix element
S;f)(E) = 627zﬁ‘)’;:ﬂ:/d4$1/d4lzsp(£2,zl)pal
x (FBS (22)85 (21) Dyv (2, 21)1i)

e2/d“zl/d":cz(fﬂ(_)(lz)’r“sr(fz,11)7"¢(+)(‘°1)|i)
X D,,,,(:cg,:cl) . (1277)

This amplitude vanishes if the initial and final states have different
numbers of photons. We consider therefore the initial and final states |5) =
|ps, si) and | f) = |py, s7) indicated by the Feynman diagram of Figure 12.4.
For these states we have, as in (12.29) and (12.31),

YO@l) = [ g ulps se™ (12.78)

(7@ = [T s)e™ ™ (12.79)

Then, using the expressions (10.198) and (10.214) for the electron and
photon propagators and integrating over z; and x3 in (12.77), in the manner
of (12.71), we obtain straightforwardly

2
2 m

_1" 4 bl &l =71 b L v
BE, Vo (P17 P) / d*ka(py, 51)7" Sk (pi — k)y

x u(pi, 5:) Do (k)

SHE) = e

Electron Self-Energy 445

Pi, Si

Figure 12.4: Feynman diagram for the electron transition amplitude |p;, ;) —
1Py, s1)-

. m? 1_
= —i(27)*6*(py — pi) mvu(Pf,Sf)

dik 1
—je2 Guv " Y .
X [ ie /(27r)4 k2+i€7 f,-—//—m+ic7 ]u(p,,s,)

) m2 1_
—i(27)*6%(py - p:i) rE,Vu(pf’ s7)E(pi)u(p;, si)-

(12.80)

The photon propagator, from the definition (10.201), involves the cre-
ation and then the annihilation of a (virtual) photon from the vacuum. We
therefore associate with the amplitude (12.80) the momentum-space Feyn-
man diagram of Figure 12.5: an electron propagates along, emits, then
reabsorbs a virtual photon indicated by the wavy line, and then propagates
again as a free particle. This is evidently a self-energy diagram associated
in this example with electromagnetic mass. Before concerning ourselves
with the physical interpretation, however, let us proceed to evaluate X(p),
which we can write equivalently as

dk 1 P—-K+m

¥y = —je? —_——
(p) = —ie ) R R —m

(12.81)

where the ie in the denominator is now implicit. We have multiplied the
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Figure 12.5: Self-energy diagram associated with the amplitude (12.80).

numerator and denominator by § — ¥ + m, as in (10.199). Now we use the
general identities v,7” = 4 and v, 7" = —2¢:

d%k 1 K—p+2m

ik (p— k)2 —m?’ (12.82)

Y(p) = —2ie?

We consider a Taylor series expansion about p = m. If p—m=0we
have (§ — m)(§ + m) = p? — m? = 0, or m? = p®. Thus

(::,S:_?r:,z = kfj;:pﬂ;‘—m)F(k,;ﬁ—m) (12.83)
. dik 1 ]/ 4+m
T(p) = —2ie? (21r)4ﬁlc2 — 2%y
dk 1
— 2ie?(p — m)/ Wﬁp(k,,g —m)
= A+B(F-m) (12.84)

Since (§; — m)u(pi,s;) = 0, the second term makes no contribution to
(12.80). Thus we need consider only

dk ¥F+m
— _9e2 . 12.85
A= —2ie / (2n)t F2(kZ — 2kp) ( )
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To do the integral we use a trick of Feynman’s: the identity

1 ! 1
E_A dtm , (12.86)
with @ = k2 — 2kp and b = k?, gives
! &k H+m
— _9:,2
A= —2ie /0 dt/ (27 (82 = 2kpi)? (12.87)

or, introducing the new integration variable ¢ = k — pt,

1 d¢ d+tm4+m
— _94p2
A= —2e /0 dt @n) (@ = mi)? (12.88)

Now ¢ = (¢° q), and because the integral over ¢° extends from —oo to
0o, and the integral over q is over all solid angles, the term with ¢ in the
numerator makes no contribution to the integral. Thus

1 4
A= —2ime2/ dt(t + 1)/ (d 1 1 . (12.89)
0

2m)4 (2 — m2t2)?

The integral over g is”

L 4/daq/oo d¢10
27 -0 (9 — q% — m?t2)?

= 1 4.’1/‘13,1_1_
r) 2 (q2 + m2t2)3/2

= d 47 dgq”
3973 (¢2 + m2t2)3/2
. A/mt drz? . A
1 rr 1
when we introduce a high-energy cutoff A >> m. Therefore
me? [1 A
[~ —— ——
A = oo /0 di(t+1) (log — logt)

Ima A

5y log; (A >>m). (12.91)

"The integral over gg is of the form given in I. S. Gradshteyn and I. M. Ryzhik, Table
of Integrals, Series, and Products (Academic Press, New York, 1980), Section 3.241, No.
4.
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Thus A = ém, the electromagnetic mass (11.93) calculated previously by

“old-fashioned” methods. .
In Section 11.6 we showed that the electromagnetic mass term result-

ing from the coupling of the electron to the field can be caqcelled by an
appropriate counter term in the Hamiltonian, so that the mass in 'the Han}ll—
tonian is in fact the renormalized, observed mass. The Hamlltoman. density
associated with the counter term, according to equation (11.108), is

heounter = —6mi! B = —6mPyp. (12.92)

Consider the first-order contribution of this term to the S matrix. From
(12.25), (12.78), and (12.79),

S(i) = —i/d4x(f|hcounter(£)|i)

2 1 N
= ibm ETE; Vﬁ(Pj»sf)“(Pi,si)/d‘lze (ps=pi)z

m? 1_ o
= im(27)*6*(ps — pi) mvu(p;,s;)u(p,,s.). (12.93)
This cancels the S-matrix element (12.80). In other words (12.80), with i!:s
diagram shown in Figure 12.5, is the term responsible for electromagnetic
mass in the relativistic S-matrix theory.

12.7 Remarks

From the viewpoint of quantum field theory, Feynman diagrams are as-
sociated with the normal ordering of time-ordered products, each normal-
ordered constituent corresponding to one or more diagrams. The pormal
ordering of the time-ordered product in (12.61), foF instar}ce, has given us
the Compton scattering term (12.62) and the a.ssoc1ated. dlagram of F}gure
12.2 (or 12.3), and also the self-energy term (12.76) and its dl.agram, Figure
12.5. Wick’s theorem, as described in the next section, provides a system-
atic way of writing a time-ordered product as a sum of normal-ordered
constituents. Alternatively, as discussed in Section 12.10, we can dedl'lce
the diagrams from the more intuitive Feynman approach, without relying
on quantum field theory or Wick’s theorem. .

Whichever way one chooses to get to the diagrams, it should be empha-
sized that we are dealing with the same old physical theory of QED, but
with a far more convenient formulation of that theory (Weinberg, 1977):
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... the theory of Schwinger, Tomonaga, Feynman, and Dyson
was not really a new physical theory. It was simply the old quantum
field theory of Heisenberg, Pauli, Fermi, Oppenheimer, Furry, and
Weisskopf, but cast in a form far more convenient for calculation,
and equipped with a more realistic definition of physical parameters
like masses and charges.

The simplification achieved by the Feynman formulation, in particular,
is already evident in the self-energy calculation of the preceding section.
The starting point of that calculation is (12.77);8 the calculation itself pro-
ceeds straightforwardly to (12.91). Things were much more involved in
the old-fashioned calculation of the same result in Chapter 11. There we
separated the static and dynamic contributions resulting from the use of
the Coulomb gauge. Then we had to subtract the contributions (11.30)
and (11.38) associated with the pure vacuum state. Finally we arrived at
(11.56) and (11.65), from which the electron self-energy was calculated in
Section 11.4.

The result of the old-fashioned and covariant perturbation theories, of
course, is the same: the electromagnetic mass §m is logarithmically diver-
gent. However, the “modern” formulation is far more manageable in higher
orders of perturbation theory. It furthermore provides an unambiguous
renormalization procedure and allows the renormalizability of the theory
to be demonstrated. This is a very important point, for a tenet of modern
physics is that any fundamental theory must satisfy three highly restrictive
criteria: it must be Lorentz-invariant, gauge-invariant, and renormalizable.

Before embarking on the intuitive path of Feynman in Section 12.10, we
now discuss Wick’s theorem for converting a time-ordered product to a sum
of normal-ordered constituents and how this leads to Feynman diagrams.

12.8 Wick’s Theorem

Consider the generalization of (12.50) to the case of three fields. Proceeding
in exactly the same fashion as in the derivation of (12.50), we obtain

TAu(z3)Av(z2)As(21) = N[Au(23)As(22)A0(21))
+ iDyy (23, 72) Ao(z1)
+ iDyo (23, 1) Ay (22)
+iDyo(z2, 21)Au(x3) . (12.94)

®In Section 12.10 we shall see that (12.77) follows almost trivially in Feynman's
approach.
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We can generalize by induction to the product of n fields. The result is
called Wick’s theorem. In simplified notation, it reads

TAnAn_l...AzAl = N[AnA"_l...AzAll

+ 3 iD(2p(n) — Zp(n-1))N [Ap(n-2)-Ap1)]

P
+ 37 iD(2p(n) — Tp(n-1))iD(@p(n-2) ~ Zp(n-3)) N [Ap(n-4)---Ap(1)]
1 4
+..4+ L, (12.95)

where the suins are over permutations p of the coordinates z;, (i) >
p(j — 1), and

Lo =Y iD(2p(n) — Tp(n-1))--iD(Ep(3) = Tp2))AlZp))  (12.96)
4

for n odd and

Lo =Y iD(2p(n) = Tp(n-1))-D(ep(2) = Zp(1) (12.97)
p

for n even. Equations (12.50) and (12.94) are, of course, special cases of
Wick’s theorem. Note that, because of the normal orderings in (12.95), we
have the vacuum expectation values

(0T An An_1...A24110) = (0]L5[0) , (12.98)

which vanish when n is odd. o o

In the case of fermion fields the generalization of (12.59) is 51mll.ar,
except that we must keep track of signs arising from the algebra of fermion
annihilation and creation operators. Thus, for instance,

TH(4)$(3)b(2)¥(1) NB@)R)B(2)v(1)] + iSk(3, 2)N[$(4)%(1)]
@ —  iSp(3,)N[B2)v(1)] — iSr(1,2)N[B(4)¥(3)]
iSr(1,4)N[¥(3)¥(2)] + [-iSr(3,4)[-iSF(1,2)]
+  [iSr(3,2))[-iSr(1,4)] . (12.99)

The minus signs in front of the propagators Sy appear when an intethange
of a ¥ and a 4 is necessary to put them in the order Yy ap'propnat'e t’o
the definition (10.193) of the propagator. Except for these signs, Wl(.:k s
theorem has the same form for fermion fields as for boson fields (Wick,
1950; Itzykson and Zuber, 1980).
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The second-order S-matrix element (12.43) involves

Th(z2)r" ¥(22)8(21)7" $(21) Au(2) Au (1)
= Tj*(22)5" (x1) Au(z2)Au (1) (12.100)
when we use the definition j#(z) = ¥(z)y#4(z) of the current density. Ac-

tually, however, this expression should be antisymmetrized to read (Pauli,
1941; Dyson 1949a)

i(2) = 5 [Ba(2), Yo(2)hs | (12.101)

since ¥(z) and ¥(z) are anticommuting operators in quantum field theory.
The consequence of this antisymmetrization for our purposes is simply that
the vacuum expectation value of j#(z) vanishes, and so we can in effect
drop some terms in (12.99), for instance, when z4 = z3 and =, = z,:

TP — NFER)B(2)DQ)()] +iSe(2, YN[B2)$(1)]
— iSr(1,2)N[$(2)(1)]
+ [iSr(2,1)][-iSF(1,2)]. (12.102)
Then

TYo(22)Yp(22) P o (21) V5 (1) Au(22) As (21)

{N[_tza(zz)il)p(zz)%'(ﬁ_)’/)ﬁ'(31)] +iSp(22, 1) par N[Po(z2)p: (21))]
iSp(z1,22)p aN[¥p(22)¥or (21)] + [iSF (22, £1)par ) [—iSF (21, 22)p7a)}
x {N[Au(x2)A,(z1)] + iDyy (z2,21)}. (12.103)

Since we integrate over all £; and z; in calculating transition amplitudes,
we can interchange z; and z; in the third term within the first set of
curly brackets, and replace this term by +iSp (2, z1)g/a N [ o/ (22)¥s(21)]-
This then combines with the second term to give a factor of 2 times either
(identical) term when we sum over a,f3,a’, and 8 as in (12.61). Thus,
multiplying by 'yﬁp'y(‘;,p, as in (12.61), and using the fact that 4 and v are

dummy indices that are summed over, we obtain for the second-order S
matrix the expression

o = % [ata [ 2N B2 Mzt B A )]
(12.104)
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_ e / Fo / 42, N[F(22) A(22)iSp (22, 21) Alz1)(21)]
(12.105)

— -e-i d41:1 d4.’L'2N[E(32)7“¢(32)iDuu(1’2;zl)E(a’l)'yvd)(zl)]
2/ / (12.106)

- ez/d“zl/d"‘:cgN[E(zz)'y“iSF(rz,zl)iDuu(xz,zl)‘Y"‘/’(-"’l)]
(12.107)

+ fi/d4zl/d4$2N[‘y“iSF(.’t2,21)’)‘"1'SF(.’!31,Zz)A”(Ig)Ay(Il)
i (12.108)

+ '6—2/d41!1/d41'27#1:SF(1?2,Zl)'yyiSF(Zl,Iz)iD“”(l’z,Zl) .
i (12.109)

This expression can, of course, be derived without Wick’s Fheorem. Th'e
normal ordering of higher order contributions to the S matrix, however, 18

cilitated by Wick’s theorem. _
gre?la);}fzf the nomi,al constituents (12.104)—(1.2.109) of the second-orde:nS
matrix may be associated now with Feynman' diagrams, anc‘l more ge_aneill'aﬂy
the normal constituents of high-order terms in the S matrix may:lrlrlls an()i
be represented diagrammatically. We now discuss some conventio

examples for constructing the diagrams.

12.9 Diagrams

The interaction

he = 6B v = oD + T AP + AP +9O) - (12110

. —{(-) .
involves electron annihilation [¢(*+)] and creation {¢ ] operators, positron

annihilation ['1Z(+)] and creation [¢(~)] operators, a.nd photon annihila-
ti [A(+)] and creation [AS,—)] operators [recall equations (12.44), (12.51)-
ion [Ay —(-) pA(+)(z)¢(+)(z) of hy,
(12.53), and (12.54)-(12.56)]. The part eql)‘ ()" As _ ) of b
for instance, corresponds to a process in which an electron i1s anni d,
a photon is’ annihilated, and an electron is created. Such a process hls
represented in Figure 12.6, where the solid and wavy lines represent :t e
electron and the photon, respectively. The arrows point toward the vertez
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Figure 12.6: Feynman diagram corresponding to eE(-)(z)Aff)(z),/,(H(x)_

at z for electrons and photons that are annihilated, and away from the
vertex for electrons and photons that are created. For processes involving
positrons, an arrow pointing toward a vertex will designate the creation
of a positron, and an arrow. pointing away from the vertex the annihi-
lation of a positron. Thus electron and positron lines point in opposite
senses. (The rationale for this convention is given in the following section.)

The interaction ea(ﬂ(a:)A,‘(z)t/)(‘)(z), in which a positron is created, a
photon is annihilated or created [A§,+) or AS‘_)], and a positron is annihi-
lated, is therefore represented by the diagram of Figure 12.7, in which the
directions of the fermion lines are reversed from F igure 12.6. The interac-
tions eE(-‘-)(:c)A,‘(z)z,b("‘)(:c) and CE(—)(Z')A# (2)¥(~)(z) likewise correspond
to (electron—positron) pair annihilation and creation, respectively, and are
represented by the diagrams of Figure 12.8.

The diagrams we draw do not necessarily correspond to allowed pro-
cesses. The one-photon pair annihilation and creation processes of Figure

12.8, for instance, are forbidden by energy-momentum conservation. (Sec-
tion 12.10)

Because h; involves ¥, 3, and A, these first-order processes correspond
to diagrams with two fermion lines and one photon line. We call these lines
czternal because none of the operators has been “contracted” to form the
propagators S or D,,,. Similarly the fermion and boson operators in the
first-order S-matrix element S(*) may be called ezternal fields in this sense.

Consider now the normal constituents (12.104)~(12.109) of S(. The

diagrams corresponding to these terms will all involve two vertices (z, and
J‘Q).
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. +) + -
Figure 12.7: Feynman diagram corresponding to e-’/j( (”)AS‘ )(z)¢( ().

@) (b)

Figure 12.8: Pair annihilation (a) and creation (b) corresponding to the inter-
actions e$(+)(z)A,,(z)¢(+)(z) and el—/)(_)(z)A,,(z)tp(')(z), respectively.
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Compton Scattering

The term (12.105), for instance, describes various processes, depending on
how the annihilation and creation operators effect transitions. The part
E(_)(ZQ)AS‘_)(Zz)iSF(ﬁz, zl)AS,+)(1:1)¢(+)(a:1) is represented by a diagram
with two external electron lines and two external photon lines, together with
an “internal” electron line [resulting from the contraction of Y(z2)%(z1) to
form the propagator Sr(z3, ;)] joining the vertices z; and z5. This part
corresponds to the Compton scattering diagram C1 of Figure 12.2.
Now since

(01T (z2)(21)10) = (Olh(w2)P(z1)|0)
O (22)8 7 (21)10) (12.111)

iSr(z2,z1)

for 290 > x19, we can think of
T (22)AS) (22)iSr (22, 21) ASD (219 (1) (12.112)

as effecting a transition in which a real (initial) electron and photon are
annihilated at z;, a virtual electron is created at z; and annihilated at zq,
and a real (final) electron and photon are created at 3. In other words,
the internal line connecting the vertices z; and z, in the diagram C1 is
associated with the creation and annihilation of a virtual electron.

For z19 > 3¢ we have

iSF(22,21) = (0[p(21)¥(22)10) = (OF P (21)p((z2)[0).  (12.113)

For z;9 > 30, therefore, the diagram C1 can be thought of as representing
the creation of an electron, a positron, and a photon at z 3, followed by the
annihilation of the positron and the creation of the (initial) electron and
photon at ;. Thus iSr(z2, ;) describes the creation and annihilation of
a virtual electron or a virtual positron, depending on whether z5, > Z1g or
Ty0 > T20.

Of course (12.105) includes other processes besides electron Compton
scattering: two-photon pair creation, described by

T (@2) AP (02)iSr (22, £1) AGD (21)9 ) (21) (12.114)

and the Feynman diagram in Figure 12.9; two-photon pair annihilation
described by

T (@) AN 22)iSr (23, 21) AL (20)9 P (1) (12.115)
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Figure 12.9: Feynman diagram for two-photon pair creation.

and the diagram in Figure 12.10; and positron Compton scattering de-
scribed by (Figure 12.11)

w‘-)(wz)Af,"(zz)isp(xz,ml)Asﬂ(zx)E""(xl) (12.116)

and
¥ (22) AGH (22)iSF (2, 1) A (21)8 (1) (12.117)

As the reader may easily show, there are no other processes associated with
(12.105) that are consistent with energy conservation.

Electron Self-Energy

The term (12.107) is identical to the operator S()(E) appearing in (12.77);
i.e., it corresponds to the electron self-energy (electromagnetic mass) and
the diagram in Figure 12.5. Since it involves both the electron propagator
and the photon propagator, it can be interpreted as effecting the emission
and absorption of a virtual electron or positron and the emission and ab-
sorption of a virtual photon (Figure 12.5). That is, the photon propagator
defined by z'Dw/(:':mml) = (OITA;A(32)AV($1)|O) = (OlAu(:"Z)Av(zl)IO) =
(0|A§,+)(x2)A£,_)(z1)|0) for £,0 > 10, for instance, corresponds to the
emission of a photon [AS,—)(.’BI)] followed by the absorption of the pho-

ton [A$.+)(:c2)], just as iSp(z2,%1) corresponds to the emission and re-

absorption of a virtual electron or positron.

Diagrams
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Figure 12.10: Feynman diagram for two-photon pair annihilation.

Figure 12.11: Positron Compton scattering.
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Xy X

Figure 12.12: Vacuum polarization diagram.

Photon Self-Energy (Vacuum Polarization)

The term (12.108) involves two external photon.lines a.pd two mte;ri;l
fermion lines, and corresponds to the Feynman dlagra.m in Fl.gure 12.12.
We have already noted that iSp(z2, ;) may be assqcnated with thedcre;
ation and annihilation of a virtual elect}‘or} or positron. The pro ucd
iSp(z2,21)iSk(z1,22) is easily seen by ‘51m11ar .arguments to correspc?;nl.
to the creation of a virtual electron—positron pair follov:e(.i by the annil-
lation of the pair (Figure 12.12). As the “closeq loop” in th(? Fey.nmar}
diagram of Figure 12.12 suggests, (12.108) de§cr1bes t:.he 'mod'xﬁ(ciatlopb:s
the propagating photon by virtual electron—positron pairs, i.e., it esctrl "
vacuum polarization (“photon self-energy”). We ha\{e alread.y encoun (irl .
vacuum polarization in connection with the Lamb shift, anfi in Sectlog .
we outlined an old-fashioned calculation of vacuum po.lanzatloq. T. e l::o-
variant calculation based on (12.108) may be found, for instance, 1n Bjorken
and Drell (1964).

Other Second-Order Processes (Diagrams)

The term (12.106) involves four external fermion lines and one i_nternlt:l
photon line, the latter associated with the propagator Dy (z2,2y), i.e., the

=(-)
emission and absorption of a virtual photon. The part ¢ (22)9(H)(z2) x
iDyy (z2 171)_1/;(-)(21)¢(+)(21), for instance, describes electron-electron scat-
" ’
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p,0 AU p 2(’) p,®
X1 X2 X1 X2
p1(i) p2(i) P, @ AU
@) (b)

Figure 12.13: Direct (a) and exchange (b) amplitudes for electron-electron
scattering.

tering. Because E(_)(xl) and E(_)(zz) can create either final electron, we
have the “direct” and “exchange” amplitudes shown in Figure 12.13. As
a consequence of the fermion algebra (i.e., the Pauli principle), these two
amplitudes add with opposite signs in the total electron-electron scatter-
ing amplitude. Equation (12.106) also describes positron-positron scatter-
ing and electron—positron pair annihilation in the field of an electron or
positron (Figure 12.14).

The term (12.109) has only internal lines (Figure 12.15) and therefore
does not effect any transitions. The term (12.104), finally, has only external
lines, and corresponds simply to two first-order processes, of the type shown
in Figure 12.6, proceeding independent of each other.

Lines and Vertices

It should be clear by now that the basic building blocks of Feynman di-
agrams are vertices and propagators. For a given normal-ordered con-
stituent in the nth order contribution to the S-matrix, we have n vertices
T, %2, ... z,. For each pair of Dirac operators ¥(z;) and E(:cj) that com-
bine to give a propagator Sr(z;, z;), we draw a solid (fermion) line from
i to z;. For each pair of Maxwell field operators A,(z;) and A, (z;) that
combine to give a propagator D, (z;, z;), likewise, we draw a wavy (pho-
ton) line from z; to z;. Unpaired operators ¥(z;) and ¥(z;) correspond
to external fermion lines drawn from z; to the outer part of the diagram



460 Feynman Diagrams

Figure 12.14: Electron-positron pair annihilation in the field of an electron.

Figure 12.15: The “vacuum diagram” corresponding to (12.109).
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in the case of J(:c,-), and to z; in the case of ¥(z;). Unpaired operators
A(z;) and A(z;) correspond to external photon lines, drawn from or to z;
in the case of A(-)(z;) and A (z;), respectively. The external lines are
associated with the annihilation of “initial” particles and the creation of
the “final” particles. With experience it becomes easier in many instances
to start from the diagrams than from the normal-ordered constituents of
the nth-order S matrix S(»).

Having completed our survey of Feynman diagrams associated with the
second-order S matrix, we refer the reader to Bjorken and Drell (1964)
or Sakurai (1976) for detailed calculations of the amplitudes for these di-
agrams. Let us consider now Feynman’s way, where the diagrams (ampli-
tudes) are deduced without quantization of the Dirac or Maxwell fields.

12.10 Feynman’s Way

The Dirac equation (9.50) for a spin-1/2 particle in a field A* = (&, A)
can be written as

(F — m)p(z) = (i — m)p(z) = eA2)(=). (12.118)

We can attempt to solve this equation by introducing the Green function
G(z', z) satisfying

(# - m)G(z', z) = 6*(z’ - x), (12.119)

so that a solution of (12.111) is
Y(z') = Yo(z') + e/d4:cG(z', ) Mz)y(x), (12.120)
where 9o(z) is a solution of the free-particle Dirac equation, (J—m)yo(z) =

0. Once G(z’, z) is found, we can solve (12.120) iteratively as a perturbation
series:

Y(') = 1/)0(2')+e/d4:cG(a:’,:c)A(z)¢g(z)

+ €? d"z/d"x”G(z’,x)A(z)G(z,:c")A(:v”)z,bo(:c")
T (12.121)

To find G(z', z) we write

4
62) = (3) [arceere, a2
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t<t

Figure 12.16: Integration contour for the retarded Green function.

84z —z) = (2%)4 / dipe= P (&' =2) (12.123)
and (12.119) then implies
G(p) = ;—Ln: (12.124)
and therefore
6, = [ G = | G 021

where of course we must decide how to handle the singularity at p? = m?.

How we choose to deal with the singularity amounts to a choice of
boundary conditions. Suppose, for instance, that we want to have G(z',z)=
Gret(2'z), the retarded Green function satisfying Gre(z',z) =0for t' <t
(i.e., £y < zo). This might appear to be the natural choice, l:.>ased on
(12.120) and the analogous determination of the Green function in classi-
cal electromagnetic theory. To obtain Gii(z', z) we choose the contour of
integration in the complex po plane such that there are no poles enclosed
when ¢’ < t (Figure 12.16). The residue theorem then gives Gret(z’, z) = 0
fort’' < t.

Another choice of contour is shown in Figure 12.17. This choice is
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Figure 12.17: Integration contour for the Green function (Feynman propaga-
tor) Sr(z', z).
equivalent to replacing the denominator in (12.125) by p2—m2+ie, ¢ — 0t:

d'p  p+m
’ Y =
G(a',2) = (27) p? —m? +de

e~ (=2 = Sp(af,z),  (12.126)

where we recognize that this choice of contour gives a Green function iden-
tical to the Dirac (or Feynman) propagator defined by (10.198) or equiva-
lently, in quantum field theory, (10.193).

Before addressing the question of which Green function to choose, let
us pause to write Gret(z’, ) and Sp(z’,z) in more general forms. Using
(10.195), (11.26), and (11.27), we can write Sp(z',z) in terms of free-

particle positive- and negative-energy wave functions ¢,+(x) and dp-(x),
respectively:

iSp(a',2) = 0 = 1) 3 bpe ()B4 (x)e™ Fr =)
4

0t =) $p- (X')6,_ (x)eBo'=1) | (12.127)
P
where E, > 0.° Consider now a positive-energy solution

YD) =) cppy (x)eEr? (12.128)

p

?The summations are to be understood to include the spin components.
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of the Dirac equation. We have
[ #zise(@,2p 9O
=0(t' — 1)) bpa (e E DY cprem B f dzdy (x)dpr+(X)
P p'

—0(t — )Y bp-(x)eErD Y e / &z} _(X)pr+ (X)
P 4

=0(t' — 1)) dpr (e Er ey (12.129)
4
or
o(t — )PP (x) = i / P2Se(@, 2)° P (2). (12.130)
Similarly
ot -t (z) = —i / d3zSp(z', )1’ (2). (12.131)

According to the last two equations, S r(z', ) propagates.positive-energy
wave functions ¥(+)(z) forward (#' > t) in time and negative-energy wave
functions backward (t > t') in t..ime.

Gret(2', T), by contrast, is given by

Gral',2) = 0 =1) 3 [Bp4(x)bpy ()Y
p

+ bp () (1)EE D] (12132)

i in time.
and propagates all wave functions forwar'd in '
Consider now the consequences of using Gret(z', ) or Sr(z’, z) in the
first-order approximation to (12.120):

Y(z') 2 go(z') + e / d*zG(z', ) A(z)o(z). (12.133)

Assume that ¥o(z’) is a positive-energy plane-wave solution of the fr.ee-
particle Dirac equation, and suppose we employ the retarded Green function

Gret(z', ). Then

Y(=') = Yo(z') - iz ¢p+(x')e"E"'
P
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! B —
x e dte' ’t/da""' p+(x)‘ﬁ(1’)¢0(z)]

~ i) g (x')eEr [e / dte™*Frt / d3r$p-(X)A(z)¢o(z)]
) —o0
(12.134)

where we use the fact that [°° dto(t' —t)... = f:,oo dt... . This implies the
amplitude

ap_ (') = —ie /_ dte=iEst / 25, (x)Az)o(z) (12.135)

for the particle to be in a negative-energy state at time t/, and the S-
matrix element a,_(co). In other words, there is a nonvanishing probability
for a transition from a positive-energy state to a negative-energy state, in
contradiction to hole theory. For this reason the retarded Green function
is physically unacceptable.

If instead we use the Feynman propagator Sp(z’',x) for G(z',z) in
(12.133), then (12.134) is replaced by

1/)(:l:') >~ 1[)0(::') - iz ¢P+(xl)e—iE,t’
14

x [e /:;o dteiE"/d3:c$p+(x)4(x)¢o(z)]
+ iZ(bp_(x')e‘E’tl [e /:0 dte"iE’t/daz$p_(x)A(z)¢o(z)] :

(12.136)

As t’ — oo the second term vanishes, and so a positive-energy electron can-
not make a transition to a negative-energy state. The use of the Feynman
propagator therefore appears to be consistent with hole theory.

This satisfactory feature of the Feynman propagator is accompanied by

something curious: ¥(z') # to(z') as t’ — —oco. According to (12.136), for
t' — —oo0,

Y(z') = Po(a)+i Y dp(x')e'Brte / " dte=iE / d*z8,_ (x)A(z)bo(z).
P - 0Q
: (12.137)
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. . 5:)e"PiT . a
To appreciate this result, suppose Po(z) = \/m/E,;/u(l.),,s,.)e Weitine
plane wave for an_electron of four-momentum p; and spin s;.

-qu_(x)e"'EP' = /m/E;Vi(p;, s)e~'P1'7 we have
ie / " dteiBst / Pz, _(x)A(z)Yo(z) =

[m2 1 [, s )e—iertrdT  (12.138)
i — | &*zv(pys, s )A(:c)u(p,,S.)C J
e E'.-Ej V/ ( SRS

which corresponds to the first-order S-matrix elerfnent _for f}:nr ax;r:thux::-
i i ily verify using the qu -
tion, Figure 12.8a, as the reader may eas
ﬁleld—theiretic forrr,mlation (see the following paragraph). In the pr‘;szil(lit
approach, where both the Dirac and Maxwell fields are not quan ,
v?g s )4"3""’”c is evidently interpretable as an unoccupied negatlvg-?‘rg:-i}:
stat{a’ir{ hole theory, a state into which the electron can l.>e scattere ek
ward in time” (' — —oo) by the potential A(z). (Flgu.re 13}.181-1). dSe
i ttered “backward in time,” in other words,
negative-energy electron sca ackw _ other worce.
i 1 1 d in time in the presen p
is the positron propagating forw:%r : e e O ony
i ihilation. This interpretation of positrons in the Fey | the
S it lect te forward in time
: - rons propagate ,
holds more generally: positive-energy elec Prof orward in e
i te backward in time, an e
negative-energy electrons propagal ' he | .
eqlglivalent to (positive-energy) positrons propaga.tullg forwa;ld in tlrrfs.is’f:;:
is all a consequence of the choice G(z',z) = Sr(z’,z), a choice co
with the Dirac hole theory.

In calculating the amplitude for the pair annihilation process of Figure |

12.8ain quantum field theory, we specify the initial state 1)) = |pi, 8i;Ps» 815

i i d no |
0) for an electron in state (pi, i), a positron in state (py,ss), an

i A
photons, and the final state |f) = |0;0;1,) of one photon in state (k,A)

and no electrons or positrons. Then, except for a physically insignificant |

minus sign,

S = i [ d(fini)

Y / &z (F[P(z) A=) (@)li)

i m?_1 425(py, S z)¢(2)|0)u(p;, i)
= o[ a7 [ T a0
X

e~iprtpi)T (12.139)

and obviously only the photon creation part of the operator A(z) con-
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tributes:

(1Al A(=)10)

(13,147 (2) 0)

= \/;e”"w(k,,\) : (12.140)

In order for (12.138) to reproduce the result (11.132) of quantum field
theory, we must make the replacment

Az) =/ 2wtve"‘"q’(k, ) (12.141)

in (12.138) for pair annihilation. Similarly, for a process in which a photon

is annihilated,
1 —ik.x
Az) — \/2wkve d(k,)) (12.142)

in the Feynman approach. Doing this gives results in agreement with the
full quantum field theory in which the Dirac and Maxwell fields are quan-
tized. The appropriate replacement for processes in which the photon num-
ber does not change, such as those whose diagrams involve only internal
photon lines, is discussed below.

Now in performing the integral over all x and ¢ in equation (12.133) we

get

/ dize~ (Pr¥Pi=kye — (9nyi§(y — B, — E;)8*(k — p; — py) (12.143)

for pair annihilation. The conditions wrg =FE;+Efandk =p; +p ¢ for
energy and momentum conservation cannot both be satisfied, as is obvious
for the case p; + p;y = 0: one-photon pair annihilation is forbidden. The
rules (12.141) and (12.143) for photon creation and annihilation, however,
are valid prescriptions for obtaining nonvanishing matriz elements in agree-
ment with quantum field theory, even though the processes corresponding
to these matrix elements might not be allowed by energy—momentum con-
servation.

Pair annihilation and creation processes are, of course, possible in an

externally prescribed potential AL (z) with time dependence such as to

watisfy energy-momentum conservation. This was the case in Section 9.4,
where we considered pair creation in a uniform electric field, corresponding
to a vector potential A linearly proportional to time. For pair annihilation

and creation processes in an external potential, the wavy (photon) lines in
Figure 12.8 are deleted. :
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So the idea is to calculate S-matrix elements without direct recourse to
quantum field theory. The fields () and A(z) are not operators, but ordi-
nary functions of z = (x,), and the effect of the coupling of fermions to the
electromagnetic field is studied by iteration of (12.113), using for the Green
function the Feynman propagator Sp(z',z). Sp(z',z) is not a retarded
Green function, so that there are contributions to ¥(z') from A(z)¥(z)
with t < t/ and t > t'. To calculate the amplitude for a given process,
therefore, we must specify ¥(z) in the remote future as well as the remote
past. In particular, for positron scattering processes, ¥(z') must have no
positive-energy components in the remote past (¢’ — —oo), whereas for
electron scattering processes (z’) must have no negative-energy compo-
nents in the remote future (¢’ — o). This all comes about because the
positive- and negative-energy electrons propagate forward and backward in
time, respectively, and because of Feynman’s interpretation of a positron
as a negative-energy electron propagating backward in time.

We have one example thus far — pair annihilation in an external poten-
tial — of how this works. To calculate the pair annihilation amplitude, we
require that ¥o(z’) have no positive-energy components as t' — —o0, so that
the amplitude is governed by the third term on the right side of (12.129).
We can imagine the incoming electron to be scattered backward in time
by the external potential, exactly as the diagram in Figure 12.8a suggests.
We must therefore specify the final state at t' — —oo0 as ¢p_(z' )e‘EP", 1e.,
corresponding to a negative-energy electron going backward in time.

Note that this approach allows us to describe pair annihilation as a
single-particle process. We imagine the whole space-time history of the
single particle (electron) to be laid out before us, the particle’s history
zigzagging backward and forward in time, as shown in Figure 12.8a. We
are, in effect, following charge rather than individual particles themselves
(Feynman, 1949a),

Feynman’s Way

large enough to reverse the time-sense of the world line, and thereb
to :.orrespond to pair annihilation. Quantum mechani’ca.lly, the di)-,
z(;c v::‘l,le:_f the world lines is replaced by the direction of propagation
.Thxs view is quite different from that of the Hamiltonian method
which considers the future as developing continuously from out of th
past. Hefre we imagine the entire space-time history laid out a.n;
that we just become aware of increasing portions of it success,ivel
Ina scat'teri'ng problem this over-all view of the complete sca.tteriny'
process is similar to the S matrix viewpoint of Heisenber Thi
temporal .order of events during the scattering, which is ana.lg'zed i
such detail by the Hamiltonian differential equation, is irrele\)rlant. '

W) = (@) +e [da [—io(t'—t)2¢p+<x'>$,,+(x)
b -1)) wp_(x'ﬂ,,_(z)} Hyw(z)
p

= e+ Tt i [ L7, () Mz
(for t — o0)

= @)+ Do) [/ T, () M (o)
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S Itbls Fonvenient tp derive a general expression for the S-matrix element
i, basically following the example just given for the first-order approxi-

mation. Using the Feynman propagator Sp(z’ i i
e e (19505 2 pagator Sp(z’, z) and the identity (12.127),

... considering [a] continuous world line as a whole rather than
breaking it up into its pieces. It is as though a bombardier flying
low over a road suddenly sees three roads and it is only when two of
them come together and disappear again that he realizes that he has
simply passed over a long switchback in a single road.

This over-all space-time point of view leads to considerable sim-
plification in many problems. One can take into account at the same
time processes which ordinarily would have to be considered sepa-
rately. For example, when considering the scattering of an electron
by a potential one antomatically takes into account the effects of vir-
tual pair productions. The same equation, Dirac’s, which describes
the deflection of the world line of an electron in a field, can also
describe the deflection (and in just as simple a manner) when it is

(for t' — —o0) (12.144)
where 1p4(z) = ¢p+(x)eFEr*. Thus
Spi = 6;; e / d*z, (z) Az)yi(x) (12.145)

;‘s t}lxe lS-ma,trix element for the transition |i) — |f). Here t;(z) is the
inal plane wave and the — sign is used if it is a iti

e W positive-energy solution
propagatlngl into the future, whereas a + sign is used if ¥ (x) isi negative-
:‘:etrgy solution prop?.gz«%tmg into the past. ¥;(z) is the initial wave, reducing
: .d—» —00 t.o an incident positive-energy solution or at ¢ — oo to an
incident negative-energy solution. t;(z) for arbitrary ¢ satisfies (12.120):

vi(z) = vo(z) + c/d‘z'Sp(z,z')A(z')d;,-(z'). (12.146)
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Then
Sy = bg :I:ie/d4x_1/7j(z),ﬂ(z)¢o(:c)

xie? [ dte [ dia @ M)Sr (2, 2 (@)

+ (12.147)

In this example of pair annihilation the incident wave 1/;0.(1) correspond:
to an electron propagating from t = —oo to.the vertex of Elgure 12.8a, ar:'
the final wave ¢y (z) corresponds to a positron prf)pagatmg frorp —00 to
the vertex, i.e., a negative-energy electron propagating backwa:rd in time :1)
t = —00. We can think of the positive-energy electron as being scattere

i ative-energy state propagating backward in time.

mtol: ::1}(:5 case of pfi); creation (Figure 12.8b), the incidex}t wave may l.)e
taken to correspond to a negative-energy electron propagating ba:ckward in
time, i.e., a solution of the Dirac equation that re(.luc‘es toa .negatlve-energy
plane-wave as t — co. The final state ¥y(z), as indicated in the Ft?ynr?an
diagram in Figure 12.8b, is a positive-energy plane wave propagating for-
ward in time.

Compton Scattering

To gain more familiarity with Feynman’s perspective, let us consider again
the example of Compton scattering, described in second-order perturbation

theory by
5D = xie? / d'z / T, (@) A=) Sp(z, 2V AR Wo(e).  (12.148)
Using the initial and final states (12.64) and (12.65), we can consider the

initial photon to be annihilated at z and the final photon to be created at
z', corresponding to

’ 1 1 —ikiz dky -z’
A(I)SF(SC, I’)A(.’c’) b d qu".sp(z,z')q/fe et y (12149)

or the initial photon to be annihilated at z’ and the final photon to be
created at z, corresponding to

1 ’ —ik;-g' iky T
A2)SFr(z,z")A(z") — 4 ,Zc;:_w;vd/SF(z’z ) e~ EiT etk T (12.150)
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when we use the rules (12.134) and (12.135). These two terms correspond to
the diagrams C2 and C1, respectively, of Figure 12.2. For Yo(x) we assume
a plane wave for the initial electron, i.e., ¥o(z) = [(m/E:)Y?/V]u(p;, s;) x
e~**i=. For ¥,(z) we assume a plane wave [(m/Ep)Y2/V]a(py, s;)etts=.
Then (12.141), with A(z)Sp(z, ') A(z') equal to the sum of (12.142) and
(12.143), gives exactly the S-matrix element Sﬁ)(Cl) + S‘(,f)(C2) derived
from quantum field theory in Section 12.5.

Electron Self-Energy
The second-order amplitude (12.147),

S = _je? / &z / =G, (2)7" Sk (2, 27" Yo(2') A, () Ay ('),
(12.151)
also applies for an electron in the vacuum. In this case, in which there are no
external photon lines, 4,(z)A,(z’) involves the emission and reabsorption

of virtual photons, and so we replace A,(z)A, (') in the Feynman approach
by the quantum field-theoretic expression

(01T Au(2) Ay (2')[0) = iDyy (, 2"), (12.152)

where Dy, (z,z’) is the photon propagator. Then

S = e / d*z / d*e'Y; (27" Sr(z, 2')7 Yo(2') Dy (2, &),  (12.153)

and when we take 1,(z) and ¢ () to be wave functions for positive-energy
electrons propagating forward in time, corresponding to the diagram in

Figure 12.5, we recover exactly the results of Section 12.6 [compare (12.153)
and (12.77)).

12.11 Discussion

When compared with the methods of “old-fashioned perturbation theory,”
Feynman’s space~time approach is remarkable, to say the least, in its sim-
plicity. We remarked earlier that the calculation of the electron self-energy
in Section 12.6 is much simpler than the calculation of Section 11.4. In the
Feynman approach the derivation of the basic self-energy S-matrix element
[cquation (12.151)] is simpler still. Note in particular that the use of the
Feynman propagator automatically accounts for the effect of the negative-
energy states, which are essential to the logarithmic rather than linear
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divergence of the electron self-energy (Section 11.4). WIt}‘l the “Ffeynma.n
rules” for handling the vertices and internal and. external l'mes of diagrams
representing probability amplitudes, we can write expressions fo.r the f:;riz
plitudes without any operator algebra: neither the el?ctron—posnron e
nor the electromagnetic field is quantized in Feynman’s apprc:fach. Instead
we regard the entire space-time history of a process to be laid out begm':e
us, and imagine that particles are scattered backward as vye.ll as forward in
time. In the example of pair annihilation, we allow a p051t1v<?—energy elec-
tron to be scattered into a “negative-energy” state propagfxtmg backward
in time. The latter is equivalent to a (positive-energy) po§1tron propz?,gat-
ing forward in time. In this way we replace t.;he 'two particles by a single
particle that can zigzag backward or forward in time. .

As is well-known, Stiickelberg in the early 1940s proposefl that a pos1tr(?n
could be treated as a negative-energy electron pro'pa.gatmg baf:kward in
time. Feynman, independently, went well beyond this in developmg a gt}aln-
eral, relativistically covariant framework for all orders of pertu’rba.tlon t e-
ory. Unlike much of the previous work, furthermore,.Feynme?n s did not in-
volve a (noncovariant) splitting of the electromagnetic ﬁelds. lnto.tran:werﬁe
and longitudinal parts. This was an important part of the simplification he
brought to the calculations.

As in the work of Tomonaga and Schwinger, Feynman'’s approach al-
lowed for a systematic program of renormalization of mass and charge; the
infinite values of the electromagnetic mass and charge were the source .of all
the nontrivial infinities of the theory. Feynman’s approach n.lade it easier to
prove that renormalization of mass and charge could be carried out through
all orders of the S-matrix expansion. This was done l?y Dyson (1949a), w.ho
used the counter term §my in the interaction Hamiltonian to renormalize
the mass. Charge renormalization was handled by means of a counter ttlarm
by Gupta (1951). We refer the reader to a paper by Mat'thevw‘lst andea ];lr)n
(1954) for a particularly clear discussion of the renormalizability of QED,
and also to an excellent review by Gunn (1955). .

Given its computational accessibility, it is no wonder ‘that the covarle'mt
perturbation theory of Feynman — and the ubiquitous filagrams_ — provide
a computational and conceptual basis for much of pa.rtlcle physics beyond
QED, and have been usefully adopted in many-particle theory and other
areas of theoretical physics. . .

A Feynman diagram really represents an amplitude that is a sum over
paths, for the nth-order S-matrix element involves an 'n-fold 1ntegrat}<)ln
over space and time. And of course the idea qf a “negatnve-energy particle
going backward in time” is only a mathematical artifice. One should not
take the diagrams too literally.
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In fact the physical interpretation suggested by the interaction picture
can be different from that suggested by, say, the Heisenberg picture. In
the interaction picture an electron in vacuum interacts with the free field,
and its lowest-order self-energy arises from the free-field expectation values

(OlakxaLIO) = 1. Obviously the natural physical interpretation is that
the electron self-energy is due to the vacuum fluctuations of the field, the
fact that the averages of the squares of the electric and magnetic fields in
the vacuum state are nonvanishing. These nonvanishing expectation values
are associated with the photon propagator. But in the Heisenberg picture,
as discussed in Chapter 11, this same self-energy can be attributed either
to the vacuum field fluctuations or to the interaction of the electron with
itself (radiation reaction), or some combination of the two, depending on the
ordering of the field operators. The nonrelativistic theory of spontaneous
emission and the Lamb shift in Chapter 4, similarly, can be worked out in
the interaction picture, and the natural interpretation that then emerges
is in terms of vacuum field fluctuations, as opposed to the possibility of
associating these effects with radiation reaction in the Heisenberg picture.
Finally I think it is worth calling attention to the circumstances leading
up to Feynman’s space-time view of quantum electrodynamics. The basic
ideas evolved from his efforts to solve the problem of infinite electromagnetic
mass in classical electrodynamics, which he believed would provide a clue
to the solution of the problem of infinities in QED (Feynman, 1966):

I [gathered] from my readings ... that two things were the source
of the difficulties with the quantum-electrodynamical theories. The
first was an infinite energy of interaction of the electron with itself.
And this difficulty existed even in the classical theory. The other
difficulty came from some infinities which had to do with the infinite
number of degrees of freedom in the field. As I understood it at the
time (as nearly as I can remember) this was simply the difficulty that
if you quantized the harmonic oscillators of the field (say in a box),
each oscillator has a ground state energy of hw/2, and there is an
infinite number of modes in a box of ever increasing frequency w, and
therefore there is an infinite energy in the box. I now realize that
that wasn’t a completely correct statement of the central problem;
it can be removed simply by changing the zero from which energy is
measured. At any rate, I believed that the difficulty arose somehow
from a combination of the electron acting on itself and the infinite
number of degrees of freedom of the field.

The classical radiation reaction problem has never been “solved.” It is
now viewed by a majority of physicists, I suspect, as largely irrelevant, as
discussed in Chapter 5. Regarding the infinities of QED, they have for
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the most part been “swept under the rug” by renormalization. Renormal-
izability is now thought to be a criterion that must be satisfied by any
fundamental theory of physics. As discussed in Section 3.5, for instance,
renormalization seems to be logically necessary regardless of whether masses
and charges are finite or infinite. Whatever one thinks of the renormaliza-
tion program, its computational success has been little short of spectacular.

The two “sources of the difficulties” cited by Feynman — radiation re-
action and the infinite zero-point energy of the field — have figured promi-
nently in our physical interpretations of various QED effects in this book.
The point has been made repeatedly that the radiation reaction and zero-
point fields are intimately related, that effects of the zero-point field are not
eliminated by simply dropping the zero-point field energy from the Hamil-
tonian, and that very often one can interpret physical effects in terms of
vacuum or source fields, this being largely a “matter of taste.” These ideas
are not entirely philosophical; they provide a useful intuitive framework
even in such applied areas as the noise and coherence properties of lasers.
It is my hope that this book may contribute to a better understanding of
some of the simpler aspects of the quantum vacuum and different ways of
thinking about them and also that it may provide the beginner with a gen-
tle introduction to the physics and the formalism of quantum optics and
electrodynamics.
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Appendix A

Oscillator Equation and
Absorption Rate

The Newton equation of motion for a particle of mass m and charge e,

acted upon by an elastic restoring force —mw?z and an external electric

field E, (t), is
fpwtie £ 2
f+wlz= —E,(t) + —Ean(t). (A.1)

For simplicity, and to follow Planck, Einstein, and Hopf, we assume the
particle is constrained to one-dimensional motion.

The field Err(t) in (A.1) is the field of radiation reaction, i.e., the
electric field produced by the charged particle at the position of the particle.
In other words, it is the electric field that the charge exerts on itself. For
our purposes here a simplified derivation and expression for this field will
suffice. A more detailed derivation is given in Appendix D.

We recall first the expression (1.8) for the rate at which an accelerating
charge radiates electromagnetic energy. The energy radiated in the time
interval from t; to 5 is

262 2 232 . . t ta .
Wonlia,t) = 505 [ 500t = 35E0:0 5= [ % @i,
c3 J, 3c t

' (A.2)
where the second equality follows from an integration by parts. We assume
the motion of the charge is periodic and choose t; — t; to be an integral
number of periods, in which case

2 ta

2e
Wem(ts. ty) = ~3a
: '

7 (£)3(t)dt. (A.3)
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The change in energy of the charge, —Wgn, is attributed to the force
eERgr(t) of radiation reaction:
ta

_WEM(tz,tl)z-?)’Z—Z [ 7y ()it)dt = / cErn()it)dt  (A.4)

t

or
2e .

Ern(t) = I3 Z (1). (A.5)

Although this expression for the radiation reaction field was derived under

the assumption of periodic motion, it actually holds more generally, as

discussed in Chapter 5 and Appendix D. When it is used in (A.1), we

obtain the equation (1.41) used by Planck, Einstein and Stern, and others.

For the case of a monochromatic applied field E, (t) = E,, cos(wt +6.),
equation (1.41) has the solution

—i(wt+6.)
_Ei"e_____] , (A.6)

e
t)=——R
(1) m e[wz—w§+i7w3

so that the rate (force times velocity) at which the oscillator absorbs energy
from the field is found after some simple algebra to be

e? 7w4Efw

Wa = B0 = gy

(A7)

where we have taken an average over the oscillations of the field, replacing
cos®(wt + 0,,) by 1/2 and sin(wt + 6,,) cos(wt + 8,,) by 0.

Now suppose the applied field has a broad distribution of frequencies,
with energy density in the interval [w,w + dw] given by p(w)dw = EZ,, /8.

In this case (A.7) is replaced by
W = 4me? [ wp(w)dw
AT T )y WEowd)? e

(A.8)

The time v = 2¢2/3mc® = 6.3 x 10~ ?*sec is so short that, for natural
oscillation frequencies w, of interest, yw, << 1. Furthermore p(w) may be
assumed to be flat compared with the sharply peaked function

wt wl

T DT T 720 - e —wa)? ¥ TR (A.9)

in the integrand of (A.8), so that

. mely e dw _ mely , 27
i = T [ ot = T (5)
272e? we? me?
= ———plwo) = ——p(vo) = 5—p(v0)- (A.10)
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In the last step we have replaced p(v,) by p(v,)/3, where now the spectral
energy density is defined by p(w)dw = (E2, + E2, + E2,)/87 = 3E2_/8x
for (isotropic and unpolarized) thermal radiation, We have thus arri\i‘;d at
equation (1.7) for the energy absorption rate.

By replacing e?/m by e?f/m in equation (1.7), where f is the oscilla-
tor strength of an atomic transition of frequency w,, we obtain the energy

abs?rption rate given by quantum mechanics up to second order in pertur-
bation theory.!

1See, for instance, M. Cray, M.-L.. Shih, and P. W. Milonni, Am. J. Phys. 50, 1016

(1982).



Appendix B

Force on an Atom 1n a
Thermal Field

We shall follow Einstein’s derivation of the force acting on an atom moving
with velocity v in a thermal field. A classical derivation can be given along
similar lines for the Einstein—Hopf force (1.42) acting on a classical dipole
oscillator. Since the result differs from (1.92) only by simple multiplicative
factors, we will not go through the classical derivation here.}

The field energy density in the frequency interval [w, w + dw] and within
the solid angle d2 is p(w)dwd/4x, where p(w) is independent of direction
since thermal radiation is isotropic in the laboratory frame. Consider radi-
ation propagating in a direction # with respect to the axis defined by the
atom’s velocity. The frequency of radiation in the atom’s frame is Doppler
shifted to

w'%’w(l—%cosﬂ) (v/e << 1). (B.1)

The radiation appears to the atom to be directed at an angle ¢ given by
the aberration formula?

cos@’ = cosf — I)C-sin2 0. (B.2)

The field energy density p'(w’, 8')dw'dQ¥’ /4x in the frame of the moving
atom can be obtained straightforwardly from the well-known transforma-

1See T. H. Boyer, Phys. Rev. 182, 1374 (1969) for the classical derivation following
Einstein and Hopf.

2See, for instance, A. P. French, Special Relativity (Nelson, Sunbury-on-Thames, Mid-
dlesex, 1979), p. 134,



482 Force on an Atom in a Thermal Field

tion properties of the electric and magnetic fields under Lorentz transfor-
mations of the coordinates. We simply write the result:

P, 0)dw'dQ = (1 - 2 os 6)p(w)dwdS, (B.3)
c

or

dw d(cosf) ~

PWw,o)y=(Q1- g—cos 0)p(w)— o’ d(cos )

1- 2 cos 6')p(w), (B.4)

where we have used (B.1) and (B.2) and continue to assume v/c << 1.
From (B.1) it also follows that

w' dp(w’
p(w) = p(w’ + —cos 0" = p(w') + pd(w ) (c) w' cosd’, (B.5)

so that (B.4) becomes

P, 8)=(1- 3Tvcos0') [p( N4 —— dp(w’) (c) w cosﬁ] (B.6)

Radiation in the solid angle d§2’ induces in the moving atom an average
number
Ng = Blzszl(wl, 0’)(19'/47( (B7)

of stimulated emission transitions per unit time, and a number
ny = B1aN1p' (W', 0')dQY [4m (B.8)

of absorption transitions. The net momentum per unit time imparted to the
atom due to stimulated emission and absorption of photons of momentum
hw'/c is thus

dp hu'

F= 2? =(ny — ng)— cos ', (B.9)
since absorption causes the atom to recoil in the same direction as the field
propagation, whereas, from conservation of linear momentum, stimulated
emission causes recoil in the opposite direction. From (B.7) - (B.9),

hv' B
F= ‘:_’ =2 (N1 — Na)p'(w',0') cos 0'dY. (B.10)

Note that spontaneous emission adds no net momentum on average to the
atom, since it is equally likely in all directions.
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We now add up the forces associated with all directions of propagation
of radiation of frequency w :

_ hw Blz 2
F = — (Nl Nz)/ d¢’/ df’sin¢'p'(w',0') cos 0
ho'’
= ——Blz(Nl Nz)/ df’ sin ¢’ cos 0’ p'(w', 0)
0
~ My w dp(w)
(M, = Ny o) - 522, (B.11)

wherfe to lowest order in v/c we have dropped all primes. This is Einstein’s
equation (1.92) for the force on an atom moving in a thermal field.



Appendix C

Derivation of Equation
(2.28)

The general identity V- (Fx G)= G-V xF—F -V x G, together with
the Coulomb gauge condition V - A, = 0, implies

(VXA = V- (A xVxA)+A,-Vx(VxA,)
= V(Ao xVxA)+ A, [V(V-A,)— VA,
= V- (Ao xVxA)—A, VA,
= V- (Ao xV x A,)+Ek%A? (C.1)

when we use the fact that A, satisfies the Helmholtz equation (2.24). Then
the divergence theorem implies

deﬁ AL x (Vx Ao+ Ic"’/daer(r)2

k? / dPrAo(r)?, (C.2)

/ [V x A(r))?

since the surface integral vanishes as a consequence of the assumed periodic
boundary condition on Ay(r).



Appendix D

Electric Field of
Radiation Reaction

In the mode continuum limit (2.84) becomes

e V !
E(t) = —ocs / 5> /0 (1) - e, Jeg, coswr( — 1)
e t * oo
= 5/ dt'cosmk(t'—t)/0 dkk?
X / dQy [x(t') — (k - x(t")k], (D.1)

where [ d) denotes an integration over solid angles about k and we have
used the identity x = (k - %)k + 3, (x - ek, )ek,, Where k = k/k. Now

[ donti@) - (k- x@pki = gr - i), @)

and so

4e t . 00 )
_37rc3/0 dt’x(t')/o dww? cosw(t’ — 1)

_ e [, 0%
= §‘/0 dtx(t )Eﬁé(t—t)

- %3[4(:)5(0) + % % (), t>0, (D.3)

ERR(t) =
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where the last line follows from two partial integrations. Here

5(0)5%/0(”@:;1-5/00043 (D.4)

Thus 9 5
Enn(t) = o5 ¥ (t) - —%(1), (D.5)

4e2 [ 4e? *® 4a [
= — = — dE = dF D.
sm 37rc3/0 duw 37rhc3/0 E 3mc? ,/0 (D-6)

is called the electromagnetic mass. We can then write (2.82) as

where

.. 2e? ..
(m + dm)k + wix = eE, + % X . (D.7)

According to this equation, §m is effectively a contribution to the mass
and arises from the action on the dipole of its own field, i.e., from radiation
reaction. (See also Appendix A for a simple derivation of the first term on
the right side of (D.5).)

The calculation of the radiation reaction field (D.5) of a point dipole is

valid both as a classical calculation and as a Heisenberg-picture, quantum- -

mechanical one.! Within the nonrelativistic approximation made in the
calculation, the result for Exg(t) applies also to a point charge. One way
to see this in a crude sort of way is to consider the nonrelativistic Heisenberg
equation of motion for an electron in a plane-wave field:.

mx = eEoe—i(“‘_k'x) , (D.8)

where we drop terms of order |x/c|. Since k - E, = 0,k - X is constant, the
motion in the direction of field propagation is unaffected by the field in the
nonrelativistic approximation. Thus we can effectively replace ek x by 1
on the right side of (D.8). In other words, once the nonrelativistic approx-
imation is made we are also making, in effect, the dipole approximation.
Now if we extend this argument to all plane-wave modes of the field, we
conclude that in the nonrelativistic approximation the expression (D.5) for
ERr(t) applies to a point charge as well as to a point dipole.

The nonrelativistic radiation reaction field for a rigid charge distribution
is given, for instance, by Jackson.2 We shall outline here a calculation using

1Recall the discussion in Section 4.6 about the formal correspondence between the
classical and quantum-mechanical solutions of the Maxwell equations.

2J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975),

Chapter 17.
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tl'ne Qouleb gauge, which leads to some simplification. For a rigid charge
distribution p the radiation reaction field is

Egrg(t) = % / d*zp(x)E,(x,t), (D.9)

where e is the total charge (f d®zp(x) = €) and E,(x,t) is the self-field at

x. In the Coulomb gauge the transverse and longitudinal parts of E,(x, t)
are, respectively, ’

14
El(x,t) = —-C-E;A,(x,t), (D.10)
El(x,t) = -V, (x,), (D.11)

where
_ 1 S (Xt =[x — x|/

A, (x,t) = c/d% — ) (D.12)

_ , p(x', 1)
¢s(x,t) = /da-’v k—x]’ (D.13)

and J(x,t) and p(x,t) are the current and charge densities, respectively.

It is clear that, for a spherically symmetric charge distribution, El (x,t)

qlakes no contribution to Err(t). That is, the electrostatic radiation reac-
tion field vanishes and

1
ERR(t) - ;/dszp(x)t)E:-(x,t)
1 o Jl(x/ t_l W
= —— | d e 3,/ ) x —x'|/c)
ec? ./ -’Bp(x,t)at /d ’ Ix - x’l
_ 1 &=
- —ECT';) el /dsrp(x,t)/d3;,,'|x_x,ln_1
aﬂ+1 L
X 6t"+1J (x 1t)» (D.14)

where in the last step we have employed a Taylor expansion of J*(x’,t —
|x — x’ |/c) about t. For a rigid charge distribution moving with velocity
v(t) = ¥(t), p(x,t) = p(x — r(t)).

According to (4.34) and (4.35),

Jt(x,t) = /daz'ég';(x—x’)Jj(x’,t)

_ 2, 1 3 s 1 3R;R;
= 3lilxt)- 47/‘1 ) (5-':‘ - T]) Ji(x',),

(D.15)
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where R = x — x'. The current density J(x,t) for a rigid charge distribution

J(x,t) = p(x,t)v(t), (D.16)

and for a spherically symmetric distribution the contribution to (D.14) from
the second term on the righthand side of (D.15) vanishes. In this case we
may effectively replace J4(x/,t) by (2/3)J(x',t) in (D.14):

2 = (-1)" , ne
Err(t) = ~3o E gc_"%_ dazc/daz p(x,t)|x —x'|* 7!
n=0
an+1
X W[P(X,t)v(t)]- (D.17)

If we ignore terms nonlinear in v(t), which is consistent with the nonrela-
tivistic approximation, we may make the replacement

ontt dntly
W[P(x)t)v(t)] - P(X,t)gt"—ﬂ— (D.18)

in (D.17) and write
2e = A, (a)"-1 dntly

Err(t) = —335 0 7 el (D.19)
n=0

C

-1\ J— n—1
Ap = (—6—2)— / Bz / d3z' ['i‘-a—"—‘] p(x)p(x') (D.20)
and a is a length characterizing the extent of the (spherically symmetric)
charge distribution p(x).

The radiation reaction force Frr = ¢Egrgr. As discussed in Chapter 5,
the electromagnetic mass for the extended charge distribution is

_ 22 eyt 2 [, [ g t0X)
om = 3?’-(_6-) Ao—-@/dl'/dzlx_xll
2 4 [*
= — / drp(x)(x) = e /0 dkp* (k) , (D.21)

3c?

where V2¢ = —4np and j(k) is the Fourier transform of p(x), a function
only of k for the assumed case of a spherically symmetric charge distribu-
tion. In the point charge limit, p(x) = e8*(x), p(k) = e, and

4¢2 [ 4e? [
§m = 37“-'2/0 dk = 3n3/0 dw | (D.22)
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in agreement with (D.6).

' In relativistic QED the linear divergence of §m is replaced by a log-
arithmic divergence (Chapters 11 and 12). A logarithmic divergence is
also obtained nonrelativistically when retardation is included (Section 3.9).
Historically, there were attempts to attribute all the mass of an electron to
electr'omagnetic mass, but these attempts were not successful. Radiation
reaction is reviewed briefly in Chapter 5, where we also mention theories
constructed so that the electromagnetic mass, instead of diverging, is zero.



Appendix E

Photodetection and
Normal Ordering

Devices used to measure light intensity nearly always do so by absorbing
radiation and then converting the energy to another form. At the micro-
scopic level the detection process involves, for instance, the promotion of
bound electrons to continuum states. Thus a phototube operates on the
basis of the photoelectric effect, involving a photoemissive surface and an
anode that collects the photoelectrons to register a current proportional to
the rate of absorption of photons.

Consider, to begin with, a highly idealized “detector atom” consisting
of two states, |a) and |g), of energies E, and Ey, E; > E;. We assume this
atom interacts with radiation via the electric dipole interaction —d - E(r),
where d is the electric dipole moment operator and E(r) is the electric field
operator at the position of the (point) atom.! Suppose that at time ¢ = 0
the atom is in the lower state |g) and the field is in the state [I). What is
the probability amplitude that at time ¢ > 0 the atom is in the upper state
la) and the field is in state |F)? In perturbation theory this amplitude is

. t
api(t) = _%e_wpt/h/o dty (flhr(t1)]3)
= L -iEam tdt fld(t1) - E(r, t1)]3)
= 3¢ /0 1{ 1) 5tk

= Lemm / dti(ald(t1)lo) - (FIE(r,11)I)  (E.1)

1See Section 4.4.
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in the notation of Section 12.2. Here d(t) and E(r,t) are the dipole and
electric field operators in the interaction picture.

The two-state model for an atom is discussed in Section 4.7. If we
denote by d,, the matrix element of d between the states |a) and |g), then
the dipole operator

d(t) = dggoteiest 4 dgaoe=iwest (E.2)

in the interaction picture, where hwsy = E; — Eg and ¢ .and ol are the
lowering and raising operators introduced in Section 4.7. Since (a|o|g) = 0

and (a|(7't lg) = (ala) = 1, we have

. t )
af,-(t) = %e—‘E’t/hday-/o dtl(F|E(r,t1)|I)e"""9“
. t .
= %e—iE!t/hdag,“/ dtl(FlE“(l‘,tl)lI)C'w”t‘ s (E3)
0

where a sum over y = 1,2, 3 is implicit. .
The electric field operator in the interaction picture has the form

E(r,1) = —i 3 (27hwa)/?[aae ™= Ay (r) — ale™=tAL(r)],  (E4)

a

where a, and al are (time-independent) photon annihilation and creation
operators and the A,(r) are classically determined mode functions. We
define the positive- and negative-frequency parts of the field by

EM(r,t) = —i) (27hwa)?aqe™ =" Ao(r), (E.5)
EC)r,t) = i3 (2rhwe)/ ale AL (r), (E.6)

so that EC)(r, ) = E®)(x, )t and
E(r,t) = E®)(r, 1) + EC)(x, ). (E.7)

It is clear from (E.3) that only E(*)(r,t) will give rise to an energy—
conserving transition amplitude:?

. t .
a,,-(t)=%e-‘Eﬂ/ﬁd,,,,,‘/o dty (FIECH (x, 1) | T)efvests (E.8)

2Recall the remarks following (12.18).
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and
1 t 1
asOF = 3di, dags /0 dt, /0 dtx(I|ES) (x, 11) | F)
x (F|ESH(x,t5)|I)ef@es(ta=ts) (E.9)

We now sum over all possible final states |F) of the field, assuming that
no observations are made to discriminate among possible final field states.
Using the completeness relation )" . |F)(F| = 1, we obtain

1 ! t )
lap®FF = —5dig udagu / dt, /0 dta (B (r, 1) BV (r, 1)) eioesta=te)
(E.10)

where the expectation value refers to the initial field state |1).

What we have done thus far is nothing more than standard perturbation
theory for the absorption of radiation by a two-state system. In the case of
a practical photodetector there is effectively a continuum of final electron
states |a). Not all the final states will have an equal probability of being
counted by the device, and so we integrate (E.10) over final states |a), using
some weighting function P(a) characteristic of the device:

1 t £
lags(@)? = pI(t) = F/dEaP(a)d;g’udag,,,/o dtl/ dtyeiwas(ta=ts)
0

X (B (r, 1) ESH (x, 1))

t t
= /dtl/ dt28,,(t2 — t))(ECT) (x, 1) ECH (x, 1)),
0 0
(E.11)

where L o
S (t) = v /0 dE,P(a)d}, ,dag e so" . (E.12)

The assumption of a continuum of final electron states means in effect
that the possibility of an electron making a transition from a state la) back
to the bound state |g) is negligible as a practical matter. This justifies
the use of (E.11) without accounting for higher order corrections in per-
turbation theory. In particular, the assumption of a continuum of final
electron states allows us to ignore the possibility of temporally coherent
atomic effects such as Rabi oscillations — we have gone beyond the simple

two-state model we began with and constructed a more realistic model of
photodetection.
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The result (E.11) shows that the detector responds approximately to
the integral over t; and t, of the normally ordered field correlation function
(Ef.—)(r,tl)E,(,"')(r,tg)). The approximation lies in the step from (E.3) to
(E.8), where we retain only the positive-frequency part of the field in order
to obtain a nonvanishing, energy-conserving transition probability. We are
assuming, in essence, that the observation time ¢, which might be controlled
by a shutter shielding our detector, is large compared with times on the
order of w;gl. For such time intervals the associated uncertainty in energy is
AE ~ hft << hw,g. Of course this is just the condition for the applicability
of Fermi’s golden rule. For shorter time intervals we cannot specify energy
sufficiently precisely to impose the energy conservation condition that is
part of the golden rule?

We have not allowed for any complications associated with a real pho-
todetector, but it is reasonable to suppose that (E.11) is accurate if we have
an accurate expression for the response function Sy, (t) of a real detector.
All we have really assumed, after all, is that the detection of radiation is as-
sociated with an absorptive transition between a bound electron state and
a continuum state.* It is useful to imagine an “ideal broadband detector”
such that

Suv(t) = sub(t) , (E13)
where s, is a constant. Based on the simplified model leading to (E.12),
we can see that such a detector is insensitive to the values of the frequencies
wag OVer a broad range. Actually, for a field of finite frequency bandwidth,
this requires only that the detector response is insensitive to frequencies
within the field bandwidth, no matter how it may vary with frequency
outside this bandwidth.’ Practical detectors can come very close to this
ideal for optical frequencies. Assuming an ideal broadband detector, then,

1
PO(t) = 80 / dty (B (e, 0) ESD(x,11)) (E.14)
0

31t is worth emphasizing that the appearance of the normally ordered field correlation
function in (E.8) is an approrimation, albeit an excellent one in practice. Thus, whereas
the full electric field operator E(r,t) is properly retarded, its separate positive- and
negative-frequency parts are not. Provided we are not considering the detection of
extremely short pulses of radiation, however, this is not of practical concern. “Energy-
nonconserving” processes are known to be necessary for the formal demonstration of
properly retarded interactions in related contexts, such as the resonant interaction of
two atoms. See P. W. Milonni and P. L. Knight, Phys. Rev. A10, 1096 (1975); Al1l,
1090 (1975) for a discussion of the two-atom problem.

4The electric dipole approximation is not essential, and going beyond it does not
change our results in any interesting ways.

5Gee the Les Houches lecture notes by R. J. Glauber in Quantum Optics and Elec-
tronics, ed. C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach, New
York, 1965}, and R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).
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and we can define the rate

RO() = gt-p(l)(t) = 50 (B (x, ) ESD(r, 1)) (E.15)

'I“he curren? registered by our ideal broadband detector should be propor-
tional to this photon counting rate. For a single mode of the field, (E.15) is
Proportional to (at(t)a(t)), the expectation value of the number of photons
in the mode at time ¢.

A'slightly different viewpoint can be taken to relate a field correlation
function to a field spectrum. Suppose, for instance, that the field is sta-
tistically stationary in the sense that (E',(,_)(r, tl)E'.(,+)(r, t3)) varies with ¢,
and ¢, as some function of the difference r = ¢, — ¢;:6

(E;(l—.)(r’tl)El(l-’-)(r’tz)) = (E,(")(r,tl)E,(,"')(r,tl + T))
= (ECNr,)EMD(x, 2+ 7)) . (E.16)
Then, from (E.10),

d 1 ! ;
PV = 25ldeg I Re /0 dr(EC) (r, 0 E®(x, r))ees” | (E.17)

where for simplicity we restrict ourselves to a single polarization state of the
field. Now if we imagine a detection process that responds to frequencies
inthin an arbitrarily small range about Wag, and samples the field over
times ¢ much greater than the inverse of the field bandwidth, we can see
that the number of photons counted at frequency wag will be proportional
to a long-time limit of (E.17). In other words, the measured spectrum
of the field will be proportional to a Fourier transform of the correlation
function (E(-)(x,0)E(+)(r, 7)). This is assumed in the calculation of the
laser linewidth in Section 6.5.
It is useful to define the field correlation function

G (r1,t1;r2,85) = (B (x1, 1) ESD (x9, 22)) (E.18)

in terms of which various “first-order” field interference effects, including
those measured in Michelson and Young interferometers, are described.”

6See, for instance, Glaube , ibid., . i
ed. (Charondom e 1983r) .lbld or R. Loudon, The Quantum Theory of Light, 2nd
7See Glauber, ibid., and Loudon, ibid., or L. Mandel and E. Wolf, Rev. Mod. Phys
37, 231 (1965). Many important papers on optical coherence are reprinted in Selecteci
Papers on Coherence and Fluctuations of Light, Volumes 1 and 2, ed. L. Mandel and
E. YV:)lf (gDczi)er ?oc;‘l'(s. New l”Tlork, 1970). The theory of field coherence is discussed in
an introductory fashion, mai in classical i i
i trivint S 19881 terms, by P. W. Milonni and J. H. Eberly,
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In the theory of optical coherence it is in fact useful to define higher order
correlation functions such as

(2)
Gu

vob

= (E‘(")(rl,tl)E,(,')(rz,tg)E,(,+)(r3,t3)Eg+)(r4,t4)). (E.19)

In general the field will be described by a statistical mixture of‘sta.tes rather
than a pure state, and the correlation functions are defined in terms of a

density matrix p, e.g.,

G (1,152, t2) = tr[pEf,->(r1,tl)E§+>(r2,t2)]. (E.20)

(l’l,tl;l'z,tz;l‘a,is;1‘4,t4)

We were led to the first-order correlation function G(l) c_>f the field by
starting with a single detector atom at r. Let us now imagine two detec-
tor atoms at r; and rz, and consider the probability that e:ach atom has
absorbed a photon in the time interval from 0 to ¢. For this problem we
calculate the second-order amplitude [see equation (12.16)]

agilt) = (—i)? / "ty / dta b (t) Rt (E.21)
with

hi(t) = —dy(t) - E(ry, 1) — da(t) - E(ra, 1) (E.22)

The cross terms in h(t1)hi(t2) are responsible for the transition of inter-
est. Following essentially the same procedure as that leading to (E.ll),'we
obtain for a more realistic model of our two detectors the two-fold counting

probability (see note 5)

t t t t
) = / dt} / dat, / dtf / dty Sty —t))S(ty —t3)
[} 0 0 0
X G(z)(rl,t'l;rz,t'z;rz,t'z';rl,t'l') (E.23)

when, for notational simplicity, we restrict ourselves to a single field pol'ar-
ization. Ideal broadband detectors used to measure the two—fold count%ng
probability thus measure the time integral of the second-order correlation

function:
t t
p(z)(t)zszl dt1/ dtzG(2)(r1,tl;l‘z,tz;l‘z,tz;l‘l,tl). (E24)
0 0

The generalization to n-fold photon counting probabilities is straightfor-
ward (see note 5), but far less interesting as a practical matter.
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For a slightly more general experiment in which a shutter before a de-
tector at r; is open during a time interval [0,7}], and a shutter before
a detector at ry is open during the interval [0, T3], one derives the joint
counting probability (see note 5)

Tl Tg
P(Z)(Tl,Tz)z 32/ dtl/ dtzG(z)(rl,tl;rz,tz;rz,tz;rl,tl) (E.25)
0 0

and the two-fold delayed coincidence rate

62
ROTTY) = gram? (0T

= $GO(ry, Ti;ry, Ty;ra, Tysry, 7). (E.26)

The second-order correlation function G(® is measured in intensity cor-
relation experiments of the type first performed by Brown and Twiss.8 A
simpler example occurs in two-photon absorption by a single atom, where
the rate for transitions to the continuum is approximately proportional to
G(z)(r, t;r,t;r,t;r,t). In the case of a single mode of the field this is propor-
tional to (at(t)at(t)a(t)a(t)), as can be seen from (E.5), (E.6), (E.26), and
the definition (E.19). In the special case of two-photon ionization by mul-
timode laser radiation, which often approximates incoherent radiation in
its temporal fluctuations, one calculates, under the assumption of Gaussian
statistics, a two-photon ionization rate 2! times that calculated under the
assumption of a perfectly coherent field. In the general case of n—photon
ionization, the enhancement factor is n!. For instance, the 11—photon ion-
ization rate of Xe in the (incoherent) multimode case has been observed
experimentally to be about 107 ~ 11! times larger than in the single-mode
case.’

Regarding multimode fields, note from (E.5) and (E.6) that
(B0 ED(e0) = 3 3 (2nh)(waws) /2 (adag)ei o
a B

x AL(r) - Ag(r), (E.27)
which is equal to the sum of the corresponding expectation values for the
individual modes if (a!,ap) = (alaa)&,p:

(EC(r,8) E®(r,t)) = Y (2rhwa)(alaa)|Aa(r)?

= Z(27rhwa)ﬁa|Aa(l‘)|2 ) (E.28)

8See Section 2.11 and Glauber, ibid., Loudon, ibid., and Milonni and Eberly, ibid.
9C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, Phys. Rev. Al11, 1009 (1975).



500 Photodetection and Normal Ordering

and similarly
(ED(r,1) - EO(r,t) = 3 (2rhwa)(aaal)Aa(r)?

= Y @rhwa) e+ DA (E:29)

when (aaap) (aaaa)&,p This absence of mode correlations is character-
istic of thermal radiation, as assumed in Section 8.6, and of the vacuum
state of the field. It is also approximately true of free-running multimode
lasers, but not for mode-locked lasers.

Appendix F

Transverse and
Longitudinal Delta
Functions

Consider first the following vector field obtained from a vector field F(r):

F(r')
fr—x|

1
A(R)= -V XV x /dar’ (F.1)

Using V x V x C = V(V-C) — V2C and V(1/|r — r'|) = —4763(r — 1),

we have

4TA(r) = V / &Br'v - F(rr'| / Br'F(r')V?

Ir— r’I
= V / dr'F(r') - o= |+47rF(r)
= -v [erEe). v'l 7+ 47E()
= Vv / d3’v F(r)+4wF(r) (F.2)

where in the last line we have mtegrated by parts. Thus

F(r) = A(r)——V/d3 V' F(r)

-l

2 3:F(" V' -F('
4'VxVx/d 4V/d3' (r)

r-v] |r— x|



502 Transverse and Longitudinal Delta Functions
= F(r) + Fl(r). (F.3)
This identity is called Helmholtz’s theorem. We have defined
Fi(r) = Lv x V x /dar F(r (F.4)
V' -F@) )
I = —— 3,4
Flr) = V/d Nl (F.5)

Obviously V-F+(r) = 0 and V x Fll(r) = 0, and for this reason F+(r) and
Fl(r) are called the transverse and longitudinal parts, respectively, of the
vector field F(r). Thus Helmholtz’s theorem says that any vector field can
be decomposed uniquely into transverse and longitudinal parts.

Just as the delta function §3(r — r’) has the property

F(r) = / d3r'83(r — r')F(x'), (F.6)

the transverse and longitudinal delta function tensors, denoted 6,# (r—1r")

and 6!'1 (r — r’), have the properties

Fi(r) = /d3r'6,~JJ= (r - ¥)F;(r'), (F.7)
Fl(r) = / @3+l (e — ) Fy ('), (F.8)
They are defined by
1\° kik;\
1 _ 3 » ik
&j(xr) = (2—71_) /d k (5., - —;2’) exT, (F.9)
1)° kik; k.
slir) = (5;) / Pk—zte kr (F.10)
and have the properties
(r)+6 (l‘) = 6.']'53(1'), (Fll)
2 1 31‘,'1"
5.’,‘(") = 56:‘]'63(1') ~ I3 (6.',' - ,.21) , (F.12)
I _ 1 (3 1 N 3rir;
85(r) = 3860+ =5 (6., -=3%), (F13)

all of which are easily derived. Note that 63 (r) and 6 ; (r), unlike 83(r), do
not vanish for r # 0.
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To prove (F.7), for instance, we need only show that V- FL(r) = 0,
OFt(r)/0z* = 0: () =0 ke

OFE(r) 9
Tom . T —-/ '8 (x — x') Fy(r')

1 3 3 H —
(2_) z,/d '/dk(., ) k. (r r)F(r')
= 1 ’ kik;
= (2—) d3r dak (6 2 )ke'k(r r)p(')

(21r) /da '/dak[k F(r') - k- F(r')]ek 1)
- (F.14)

so that Ft(r) as defined by (F.7) is indeed the transverse part of F(r).



Appendix G

Lorentz-Invariant
Measure

Equation (10.53) for the quantized Klein-Gordon field involves the phase—
space measure d3k/[(27)32E;]. The factor 1/2E} is introduced in order
to have a Lorentz-invariant measure. The Lorentz invariance of d®k/E}
may be checked directly, by making Lorentz transformations, or simply by
noting the identity

ol e e N (Y

where 8(k°) is the unit step function, equal to 1 for k° > 0 and 0 otherwise.
The right side, involving d*k6*(k? — m?), is manifestly Lorentz invariant.
To establish (G.1) we recall that

lye) = 3 __5|(;(; 3;) , (G.2)

where the z; are the zeros of y(z) and y = dy/dz. Thus
§(k* —m?) = §(k°% - E})
_ 1 0 0
= 35 [6(k° — Ei) + 6(k° + E3)] (G.3)

and

b(k? — m?)B(k°) = -2115,—“6(k° —Eb). (G .4)
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Consequently
d*k
(2m)

——276(k* —

m?)8(k°)

Lorentz-Invariant Measure

(%)3 T / dk°5(k° — Ex)
Bk 1

(27 2By

(G.5)

Index

A? term, 85-86, 136

aberration formula, 481
Abraham-Lorentz equation, 156,
157, 167
absorber theory (Wheeler-Feynman),
162, 165
absorption
from broadband field, 478
absorption rate, 3, 479
action, 334
advanced fields
Dirac theory, 161
Wheeler-Feynman theory, 162
amplified spontaneous emission, 199~
201
amplifying medium, 193
anomalous moment, 107, 108, 413
anomaly frequency, 206
anticommutation relations, 306, 338,
384
antinormal ordering, 131, 138, 140
antiparticles
and causality, 345
and Lorentz invariance, 345
argument theorem, 225
atom
two-state model, 128-151, 495
atomic stability, 81
auxiliary modes
in Barash-Ginzburg theory,
238

auxiliary systems
in Barash—Ginzburg theory,
236
average excitation energy, 88, 91,
409
axial frequency shift, 207, 208
axial motion
in Penning trap, 203

Barash—-Ginzburg theory
zero-point field energy in lossy
media, 233-238
Bell’s theorem, 294
Bethe log, 93-96, 410
Bloch’s theorem, 67
Bloch-Siegert shift, 190
Bohm-Weinstein theory, 168, 169
Bohr energy levels, 324, 327
Bohr magneton, 107, 206
Bohr quantization condition, 81
Bohr radius, 57, 104, 119, 418
and retarded van der Waals
forces, 257
Bose-Einstein statistics, 65
bosons, 47
annihilation and creation op-
erators, 61, 338, 342
commutation relations, 338
bosons and fermions, 337
box normalization, 44
Bragg condition, 30
Brown-Twiss correlations, 66, 67,
499
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bulk modes, 233

canonical commutation relations
Schrodinger field, 336
Casimir and van der Waals forces,
217-296
Casimir effect, 54, 57
and reality of zero-point field,
73
for Dirac field, 355-360
in atomic spectroscopy, 281-
286
Casimir effects
vacuum and source field in-
terpretations, 250
Casimir force, 54, 219
as macroscopic manifestation
of van der Waals forces,
249
and radiation pressure, 97
finite temperature correction,
269
imperfectly conducting plates,
228, 229
physical interpretation and op-
erator ordering, 246, 248
source theory, 239
spherical conducting shell, 287,
359
Casimir forces
in stochastic electrodynamics,
293
Casimir’s electron model, 286
Casimir—Polder force, 106, 107, 275
Casimir-Polder interaction, 263
causality
and spin statistics, 343, 352
cavity
overdamped, 199
cavity QED, 186-189, 210
and continuum approximation,

INDEX

267
and extinction theorem, 260
generality, 188, 189
cavity shift, 209, 210
chaos
in semiclassical dynamics with-
out RWA, 190
characteristic function
single field mode, 67
charge
bare, 314, 315, 328, 415, 417
generalized, 348
observed, 314, 315, 328, 417
and vacuum polarization,
415, 417
quantum number, 348
charge conservation, 361
charge operator, 351
normally ordered, 354
charge renormalization, 412, 417,
424, 471
charged scalar field, 345-348
chronological product, 432, 436
classical oscillator model for an
atom, 3
Clausius—Mosotti relation, 250
closed loop, 458
collapse and revival behavior, 193
coherent state, 38
Compton radius, 170
Compton scattering, 328, 439-444,
455, 470
differential scattering cross sec-
tion, 443
Compton wavelength, 304, 314, 401,
424
and vacuum polarization, 417
and zitterbewegung, 322, 323
constitutive relation, 241
continuum approximation, 242
and cavity QED, 267

INDEX

and extinction theorem, 267
continuum limit, 396
continuum states
and Lamb shift, 88
contraction, 440, 453
contravariant components, 304
cosmological constant problem, 296
Coulomb gauge, 39, 47, 120, 291,
361-364
and instantaneous Coulomb
interactions, 385
and Lorentz invariance, 363
Coulomb potential
modification due to vacuum
polarization, 417
counter term, 403, 405, 411, 471
covariant components, 304
covariant perturbation theory, 381,
425
and old-fashioned perturba-
tion theory, 449
cross section
Mott, 436
stimulated emission, 200
current density
antisymmetrized, 451
associated with negative-energy
states, 414
cutoff, 417
cutoff function
in Casimir effect, 57, 58
cutoff wavelength, 188
cyclotron frequency, 204, 206-208

Darwin term, 322

De Boer-Hamaker constant, 220

Debye length, 218

Debye—Waller factor, 29, 31
zero-temperature, 31

delay-differential equation, 167

delta function
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longitudinal, 122, 501-503
transverse, 122, 363, 501-503
density matrix, 66, 151, 498
Derjaguin approximation, 272, 273
dielectric constant
and polarizability, 244
of a metal, 275
differential scattering cross section,
435
dipole approximation, see electric
dipole approximation
Dirac equation, 303-329
and antimatter, 328
and electron magnetic moment,
413
and fine structure, 327, 328
and gyromagnetic ratio, 320
and Lamb shift, 327
conserved current density, 308
Coulomb potential, 325
electromagnetic coupling, 321
energy spectrum, 311
for electron in an external field,
318, 461
free particle, 308
Green function, 374, 461
hydrogen atom, 323
Lorentz covariance, 308
massless, 356
negative-energy solutions, 310,
312
nonrelativistic approximation,
318-322
nonrelativistic lumit, 318-320
plane-wave solutions, 308
single-particle theory, 312
spin, 309, 318, 320
Dirac field, 348
and hole theory, 350
annihilation and creation op-
erators, 348
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anticommutation relations, 348
between two plates, 357
Casimir effect, 355-360
expansion in plane waves, 348
Hamiltonian, 354
Lagrangian density, 382
massless, 357
particles and antiparticles, 350
propagator, 373
vacuum state, 353
zero-point energy, 351, 353
Dirac particle
massless, 356
Dirac representation, 306
Dirac sea, 310, 311, 314, 415
and quantum field theory, 351,
354
Dirac theory
and vacuum field, 83
Dirac vacuum, 314, 328
negative zero-point energy, 354
quantum field theory, 353, 354
stability, 353
dispersion
microscopic theory, 260
dispersion forces, 99
nonadditivity, 254258
dispersion interaction
long-range, 258
dispersion relations, 238
dressed-state formalism, 190
Dulong-Petit law, 26
dyadic Green function, 240, 241,
268
determined by classical Maxwell
equations, 246
Dyson expansion, 430

Earnshaw’s theorem, 202
effective input noise intensity, 200
Ehrenfest’s theorem, 124

INDEX

Einstein A coefficient, 79, 80, 135,
137
Einstein temperature, 26
Einstein’s A and B coefficients,
20
Einstein’s fluctuation formula, 17—
20, 24, 65
and spontaneous emission, 24
and zero-point energy, 24, 66
Einstein—Hopf model, 11-14, 22,
60, 67, 70, 164
quantum theory, 68-72
Einstein—Stern theory, 14, 17, 29,
68, 71
and quantum theory, 72
electric dipole approximation, 12,
50, 51, 84, 95, 119, 173,
488, 496
and magnetic force, 120
electric dipole interaction, 493
electric displacement vector, 123
electric field operator
longitudinal part, 127
of electric dipole, 127
transverse part, 127
electromagnetic field
action, 362
commutation relations
Coulomb gauge, 363
commutators, 58, 59
equivalence of a single mode
to a harmonic oscillator,
40
Hamiltonian, 39, 117, 363
Lagrangian density, 363
linear momentum, 46
physical states, 366, 368
propagators, 3756-377
quantization, 38, 360
Coulomb gauge, 383
in half-space, 186

INDEX

in plane waves, 363
Lorentz gauge, 366
thermal state, 268
vacuum state, 48
zero-point, 41, 42
zero-point energy, 66, 73, 128,
219, 221, 232, 250, 281,
286
zero-point energy density, 49
zero-point spectrum, 60
uniqueness, 60
electromagnetic field tensor, 362
electromagnetic mass, see mass,
electromagnetic
electron
annihilation and creation op-
erators, 452
anomalous moment, 202, 206
effective charge density, 401
effective charge distribution,
401
effective size, 400-403
effective spread, 397, 401
effective spread due to negative-
energy states, 424
effective spread due to vac-
uum fluctuations, 403
magnetic moment, 107-111
radiation reaction and zero-
point field, 111
point particle in QED, 168,
403
spin, 107
unlikelihood of structure, 403
electron and positron g factors,
209
electron cage, 205
electron line
creation and annihilation of
virtual electron, 456
external, 453
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internal, 456
electron propagator, 374, 439
electron self-energy, 381, 394, 444
and negative-energy states, 397,
400
logarithmic divergence, 397,
400
electron—positron pair creation, 403
electron—positron pairs, 157, 160,
163, 312
virtual, 328
and observed charge, 328
emission rate, 3
energy elements, 7, 8
energy nonconserving terms, 69,
146, 147, 190, 323, 496
energy quanta, 41
energy quantization, 18
equipartition theorem, 3, 4, 9, 16,
26
and Planck’s work, 16
essential-states approximation, 146,
148, 190
Euler-Lagrange equation, 362
Euler-Maclaurin formula, 58
Euler-Maclaurin formula, 98
evanescent field, 281
Ewald~Oseen extinction theorem,
188, 259, 260
exchange and nonexchange con-
tributions
to self-energy, 390-394
exchange scattering, 323
exponential decay, 136, 147, 193
corrections to, 148
external lines, 453
extinction theorem, 259, 260
and cavity QED, 260

Fermi golden rule, 431, 496
fermion algebra, 338
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electron annihilation and cre-
ation operators, 438
fermion lines, 453, 459
internal, 458
fermions
annihilation and creation op-
erators, 339, 350
anticommutation relations, 338,
419
Feynman approach
simplification compared with
old-fashioned perturbation
theory, 471
Feynman diagrams, 452-471
and space-time history, 467
Compton scattering, 440, 453
electron—positron pair anni-
hilation, 461
lines and vertices, 459
momentum-space, 443
pair creation, 458
pair creation and annihilation,
456
positron scattering, 458
self-energy, 445, 448, 456
sum over paths, 472
two-photon pair annihilation,
458
vacuum polarization, 459
Feynman gauge, 365, 366
Feynman propagator, 374, 439, 464,
465, 469
and hole theory, 465
and negative-energy states, 465
electromagnetic radiation, 375
Feynman slash notation, 307
field bandwidth, 497
field coherence, 497
field correlation function, 61, 195,
497
normally ordered, 67, 496

INDEX

thermal field, 64
vacuum, 63, 198
field correlations
and van der Waals forces, 105
field emission, 313
field spectrum, 497
fine structure, 327
fluctuation—dissipation relation, 234,
236
between vacuum and radia-
tion reaction fields, 155
fluctuation—dissipation theorem, 53,
54, 236
Fock space, 347
Fock states, 333
forward scattering amplitude, 94
Fourier’s theorem, 45
Fowler~Nordheim formula, 313
free-electron energy, 93

gain
saturation, 201
gain coefficient, 195, 200
gain medium, 193, 194, 201
Galilean transformation, 304
gamma matrices, 307
fundamental theorem, 308
gauge function, 361
gauge invariance, 47, 90, 449
gauge transformation, 360, 361
restricted, 361
Gauss’s law, 202
Gaussian statistics, 67
general relativity, 43
geonium, 202-210
ghost states, 368, 369
ghosts, 368
gluon field, 359
gluons, 359
golden rule, 431, 496
Green function

INDEX

dyadic, 240, 241, 268

determined by classical Maxwell

equations, 246
retarded, 462, 464
Gupta-Bleuler method, 366

gyromagnetic ratio, 107

hadrons, 359
quark constituents, 403
Hall effect
and hole theory, 312
Hamilton
Dirac field, 354
Hamiltonian
electromagnetic field, 39, 117,
363
Lorentz gauge, 367
transformation to electric
dipole form, 123
harmonic oscillator, 36
QED, 385
Hamiltonian density
QED
Coulomb gauge, 433
Lorentz gauge, 433
harmonic oscillator, 40
damped, 235
in quantum theory, 36-38
quantum theory, 54
zero-point energy, 66
Heisenberg-Euler Lagrangian, 425
helicity, 48
helicity operator, 321
Helmholtz equation, 39, 44, 56
Helmholtz theorem, 118, 365
proof, 502
Herglotz—Wildermuth theorem, 167
hidden variables, 151
hole theory, 314, 317, 350, 394
and quantum field theory, 354
and zitterbewegung, 323
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for solids, 311
hydrogen, 323
hyperbolic motion, 63
hyperfine structure, 327

image picture
for spontaneous emission near
mirrors, 185
indefinite metric, 366
induction force, 99
intensity correlations, 499
interaction picture, 428-431, 494
intermediate states, 388
negative-energy, 395
intermolecular forces
additive, 220
pairwise, 273
irreversible decay
Fermi’s coupled oscillator model,
193

Jaynes-Cummings model, 190
experiments, 192

Jjoining energy
in Lamb shift calculation, 409

kinetic momentum, 319
Kirchhoff’s law, 1, 2, 8
Klein paradox, 315-318
and pair creation, 317
and single-particle theory, 317
Klein—-Gordon current, 347
Klein-Gordon equation, 305
and spin, 325
Coulomb potential, 324
Green function, 372
negative-energy solutions, 305,
339, 340
probability current, 305
single-particle theory, 305, 340
Klein-Gordon field, 339-345, 505
charge current, 348
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propagator, 371, 372
Klein—Nishina cross section, 310
Klein—Nishina formula, 328, 443
Kramers—Heisenberg formula, 94
Kramers—Kronig dispersion rela-

tions, 238

Lagrangian, 115, 116, 120
Lagrangian density
Dirac field, 382
QED, 382
Schrodinger field, 334, 335
Lamb shift, 81-96, 133-152, 405—
417
and radiation reaction, 143
and vacuum field, 143
and vacuum polarization, 315,
418
as Stark shift, 93-94, 239
Feynman'’s interpretation, 92
muonic atoms, 315, 418
near mirrors, 186
nonrelativistic theory
and retardation, 95-96, 177
physical interpretations and
operator ordering, 133—
152
Welton’s interpretation, 90—
91, 403
Lamb-Retherford experiments, 81,
83, 89, 249
and quantum field theory, 378
and vacuum polarization, 415
Landé g-factor, 107
Landau terms, 422
Larmor formula, 3, 162
laser, 67
laser linewidth, 193-199
and operator orderings, 197
vacuum and source fields, 197
latent heat, 261-267

INDEX

and Casimir effect, 264, 271
liquid helium, 264
zero-point energy contribu-
tion, 266

Lennard-Jones interaction, 276, 279

Lifshitz theory
of forces between dielectrics,
220
liquid helium
and Casimir effect, 261
wetting properties
and Casimir effect, 267
liquid helium films :
and Lifshitz theory, 290
local field correction, 189, 260
local hidden variable theories, 151
London-van der Waals interaction,
218, 231
longitudinal and transverse parts
of field, 471
longitudinal delta function, 122,
501-503
longitudinal part of a vector field,
118, 502
longitudinal photons, 365~-369
Lorentz condition, 361, 365
Lorentz contraction, 310
Lorentz covariance, 305, 306, 362
Lorentz gauge, 361, 362, 364-366,
369, 377
Lorentz invariance, 90, 449, 505
and antimatter, 328
Lorentz transformation, 63, 304,
305, 308, 310, 482

Lorentz—Lorenz correction, 189, 231,

260

Lorentz-invariant measure, 342, 344,

348, 364, 505
Lorentzian lineshape, 147, 196, 201
lowering and raising operators, 37,
38, 68

INDEX

atomic, 130

magnetic bottle, 207
magnetron, 204
magnetron frequency, 204
manifest covariance, 362, 369, 505
Maxwell equations
Lorentz gauge, 364

Markovian approximation, 133, 136—

138, 140, 141, 146, 165,
423
and corrections to exponen-
tial decay, 148
in relativistic QED, 420
mass
bare, 110, 156, 160, 161, 173,
403, 405
negative, 167
electromagnetic, 88, 156, 158—
162, 167, 175, 403, 405,
411, 445, 456, 472, 488,
491
and retardation, 171
between mirrors, 189
in Moniz—Sharp theory, 170,
171
in van Kampen'’s theory, 175
logarithmic divergence, 424,
491
observed, 51, 89, 110, 156,
167, 172, 175, 401, 403,
405
mass differences, 162
mass renormalization, 86, 88-90,
95, 96, 135, 151, 161, 171,
172, 403, 405, 409, 412,
424, 471
and counter term, 403

massless scalar field, 61
Maxwell equations, 38, 39

gauge invariance, 74
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in classical and quantum elec-
trodynamics, 127
in quantum theory, 74
linearity, 45
Lorentz gauge
manifest covariance, 369
Lorentz invariance, 74
Maxwell field
propagators, 375-377
quantization, 360-369
Coulomb gauge, 360, 363—
364
Lorentz gauge, 366
Maxwell stress tensor, 98
metric tensor, 304
Michelson interferometer, 497
microwave oven, 204
minimal coupling substitution, 324
MIT bag model, 359
mode continuum limit, 53, 69, 133,
183, 263, 421, 487
mode correlations, 500
mode functions, 40, 44, 56, 59,
182, 239, 494
classically determined, 494
classically determined, and QED,
188
half-space, 183-185
in half-space bounded by di-
electric, 261
in presence of polarizable mat-
ter, 255
plane-wave, 292
transverse electric, 261
transverse magnetic, 261
mode summation
discrete and continuous, 343,
364, 390
molecular vibrations, 31
and zero-point energy, 31
Moniz-Sharp theory, 169-172
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absence of runaways and preac-
celeration, 171
motional sideband cooling, 205
Mott cross section, 436
multimode fields, 499
multiphoton processes, 190
multiple scattering
and extinction theorem, 267
in nonadditive van der Waals
forces, 256
muonic atoms, 418

n-photon absorption and emission,
431
n-photon ionization, 499
natural lineshape, 136, 147
negative norm, 368
negative-energy sea, 311
negative-energy states, 328, 390
and electron self-energy, 397
necessity for Lorentz invari-
ance, 345
neoclassical theory, 148
and vacuum field, 148
chirped level shifts, 151
neon )
solid, latent heat, 266
noise intensity
effective, 200
non-normal products
and intermediate particles, 437
nonnormal ordering, 138
normal ordering, 43, 49, 131, 136,
239, 248, 339, 364
Klein—Gordon field, 343
of time-ordered products, 448
normal-ordered constituents, 448,
453
normally ordered product, 437

observed mass, see mass, observed
operator ordering

INDEX

antinormal, 131, 138, 140, 422
non-normal, 138
normal, 131, 136, 239, 248,
339, 364
symmetric, 131, 140, 143, 246,
248, 255, 339
and stochastic electrodynam-
ics, 293
optical coherence theory, 498
orientational forces, 99
oscillator strength, 479

pair annihilation, 465, 467
pair creation, 303
in uniform electric field, 313—
314
pair creation and annihilation, 467
pair production, 314
virtual, 314
pairwise interactions, 263, 265267
particle creation and annihilation
in quantum field theory, 331
particles of finite mass
as field quanta, 378
Pauli equation, 320
relativistic corrections, 321
Pauli exclusion principle
and hole theory, 310
Pauli matrices, 325
Pauli operators, 337
Pauli spin matrices, 306
Pauli-Jordan commutators, 59
Penning trap, 202-204, 207, 210
periodic boundary condition, 44~
46, 61, 182, 334, 335
Petermann effect for lossy cavi-
ties, 199
photodetection theory, 493
photodetector
broadband, 496-498
photoelectric effect, 11

INDEX

explanation without photons,
431
photon, 41
annihilation and creation op-
erators, 45, 66, 131, 182,
254, 494
Lorentz gauge, 366
bosons, 47, 48, 363
helicity, 48
linear momentum, 47, 482
longitudinal, 365-369
scalar, 365—-369
self-energy, 458
spin, 47, 48
transverse, 365, 366
virtual, 85, 97, 1561
photon bunching, 66
photon line, 453, 459
external, 453, 458, 471
internal, 458, 467
photon number, 73
photon polarization correlations,
151, 294
photon propagator, 188, 438, 471
and Klein—Gordon propaga-
tor, 377
Coulomb gauge, 375
creation and annihilation of
virtual photons, 445
emission and absorption of vir-
tual photon, 456
Lorentz gauge, 377
photon splitting, 425
photon-photon scattering, 425
physical states
electromagnetic field, 366, 368
Planck spectrum, 7-25, 65, 68, 71
plane-wave modes, 46, 54, 255
plane-wave states, 342
Dirac field, 385
plasma frequency, 228, 275
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Poincaré stress, 159, 286
point charge, 165, 488, 490
and radiation reaction
Kramers’ views, 172
effective spread, 323, 397, 401,
424
in Moniz—Sharp theory, 171
Poisson brackets, 51
Poisson statistics, 18
polar molecules, 99
polarizability, 94, 100, 104, 106,
231, 243, 254, 257, 259,
281
and dielectric constant, 244
free electron, 283
of He, 265
polarizability tensor, 243
polarization
circular, 48
induced by the vacuum, 248
linear, 47
scalar, 367
polarization density, 122
polarization potential, 281, 284
positive- and negative-frequency
parts of field, 101, 240
positron, 312
as negative-energy electron go-
ing backward in time, 465,
467, 471
in quantum field theory, 351
preacceleration, 157, 158, 168
and Moniz-Sharp theory, 171
principle of equivalence, 163
principle of least action, 116, 120
principle of relativity, 303, 304
probability amplitudes, 73
probability current, 318
propagators, 369-377
Purcell effect for lossy cavities, 199
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Q factor, 199

quantization box, 224

quantization of energy, 8

quantization volume, 183, 198, 343,

390

quantum jumps, 210, 211

quantum noise, 200, 201
amplification, 197

quantum noise intensity, 200

quantum recurrence theorem, 193

quark confinement, 359

quark field, 359

quarks, 168

Rabi oscillations, 495
radiation pressure, 2, 97, 219, 289
radiation reaction, 54, 108, 115,
487-491
and anomalous moment, 110
and mass renormalization, 89
and quantum theory, 160
and spontaneous emission, 78,
81

and vacuum field, 151

classical and quantum-mechanical

forms, 185

classical theory, 156-169, 473

extended-charge theories, 165,
178, 490

in half-space, 184

in neoclassical theory, 148

in spontaneous emission, 79,
80

Moniz—Sharp theory, 169-172

quantum theory, 169-178

van Kampen and Moniz—Sharp
theories, 177

van Kampen’s theory, 172-
178

radiation reaction and vacuum field,

472, 473

INDEX

in relativistic QED, 418-423
radiation reaction field, 51, 52, 124,
137, 477
radiation reaction force, 478
radiative damping rate, 53
raising and lowering operators, 40,
43
random classical fields, 292
Rayleigh—Jeans distribution, 4, 8,
21,71
Rayleigh—Jeans law, 14
Rayleigh-Jeans distribution, 3, 10,
16, 19 )
reciprocal lattice, 30
recoil, 95
in absorption and stimulated
emission, 25, 482
in spontaneous emission, 25,
482
refractive index, 92
and polarizability, 259
renormalizability, 90, 427, 449, 473
of QED, 471

renormalization, 111, see mass renor-

malization, charge renor-
malization, 378
residual rays method, 6
retardation
and electromagnetic mass, 171
and Lamb shift, 95
retarded interaction
between a polarizable system
and a free charge, 283
rotating-wave approximation, 135,
138, 149, 151, 190, 422
runaway solutions, 156, 165, 168,
176
and bare mass, 167
and Moniz—Sharp theory, 171
Rutherford scattering, 436
RWA, see rotating-wave approxi-

INDEX

mation
Rydberg atoms, 276
Rydberg states, 284

S matrix, 432-436
normal-ordered constituents,
439, 459
scalar field, 60, 62
scalar photons, 365-369
scalar polarization, 367
scalar potential, 38, 116, 119, 318,
360
and instantaneous interactions,
377
Schawlow—Townes linewidth, 197,
199
Schott energy, 163
Schrédinger equation
Green function, 370
second quantization, 332-339
Schradinger field
propagator, 369-371
quantization, 336-339
Schwinger’s source theory, 239, 245
second quantization, 328, 332
self-energy, 89
electron, 381
electrostatic, 286, 287, 400
free electron, 86, 394-400, 412,
444-449
in classical electrodynamics,
160
photon, 458
self-energy diagrams, 445
self-oscillations
in Bohm—-Weinstein theory, 168
semiclassical radiation theory, 191
single-mode interaction, 189
slash notation, 307
Slater-Kirkwood interaction, 265
small-signal limit, 200
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source field, 52, 131, 136, 137
and operator ordering, 141
and spontaneous emission, 140
source theory, 239-246
Schwinger, 239
spatial dispersion, 233
specific heats, 26-29, 31
spin, 320
and conserved angular momen-
tum, 321
Pauli algebra, 130
spin anomaly, 206
spin statistics
and causality, 343
spin-orbit coupling, 322, 327
spin—statistics theorem, 344, 378
spinors, 309, 321, 326, 395
spontaneous absorption
impossibility, 23, 72, 143, 152
spontaneous emission, 20-25, 72,
77, 81, 133-152
and radiation reaction, 140,
142, 143
and vacuum field, 142, 143
as stimulated emission due to
vacuum field, 201
as stimulated emission due to
zero-point field, 24
between mirrors, 186
in dielectric media, 189
in lossy cavities, 199
inhibited, 187
in g — 2 experiments, 209
irreversible, 193
modification by reflecting sur-
faces, 184
near mirrors, 182
image picture, 185
physical interpretations and

operator ordering, 133-
152
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Purcell effect, 199
radiation reaction and vacuum
field, 80
radiation reaction and zero-
point field, 81
two-photon, 81
spontaneous emission rate
for atom near mirror, 184
Stefan—-Boltzmann law, 2-4
stimulated emission, 10, 20-25
cross section, 200
in broadband field, 79

stochastic electrodynamics, 128, 254,

290-294
Casimir forces, 293
Unruh—Davies effect, 293
strangeness, 348
stress tensor, 289
sun
as blackbody, 78
superposition principle, 255, 259
surface modes
zero-point energy, 224, 226
surface potentials, 219
surface tension
and Casimir effect, 264
symmetric ordering, 131, 140, 143,
246, 248, 255, 339
and stochastic electrodynam-
ics, 293

thermal effect of acceleration, 60
thermal field
force on moving atom, 481,
483
Gaussian probability distribu-
tion, 68
isotropy, 65
polarization, 65
thermal fields
as random classical fields, 292

INDEX

thermal radiation, 64-73, 481
and mode correlations, 500
thermal source
spontaneous and stimulated
emission, 78
Thomas-Reiche-Kuhn sum rule, 93
time evolution operator, 51, 242,
429
time-ordered product, 438
time-ordering operator, 372, 436
fermions, 373
trace theorems, 435 ‘
transverse delta function, 122, 363,
501-503
transverse part of a vector field,
118, 502
transverse photons, 365, 366
trap
Penning, 202-204, 207, 210
tunneling, 313, 314
two-photon ionization, 499
two-state atom, 128-151, 495
and quantum field theory, 337

uncertainty relation, 38, 59
energy—time, 314
and zitterbewegung, 323
uniform acceleration, 63
uniformly accelerated charge, 162—
164
units
Gaussian, 343, 360, 397
Heaviside-Lorentz, 360, 382,
390
natural, 304
Unruh—-Davies effect
in stochastic electrodynamics,
293
Unruh-Davies effect, 6064, 163

vacuum
bare, 354

INDEX

breakdown, 314
physical, 354
vacuum diagram, 462
vacuum electromagnetic field
and commutation relations, 53
vacuum field, 52, 64, 136, 137,
254, 282
absence in neoclassical the-
ory, 148
amplified, 199
and atomic stability, 81
and commutation relations, 72,
234
and Lamb shift, 85
and radiation reaction, 151
Gaussian probability distribu-
tion, 68
in Lifshitz theory, 234
into cavity, 195
modification in Penning trap,
210

transmission and reflection, 194,

197
vacuum field correlation function,
198
vacuum field fluctuations, 115, 281
vacuum fluctuations, 72, 289, 378,
401, 472
contribution to polarization
potential, 286
vacuum polarization, 303, 314, 414~
418
and Lamb shift, 315, 418
by electrostatic potential, 415
Heisenberg-Euler Lagrangian,
424-425
vacuum Rabi frequency, 192, 199
vacuum state, 52, 62, 84, 91, 124,
267, 268, 389
of Dirac field, 353
of electromagnetic field, 42,
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48

of Klein—Gordon field, 342

van der Waals forces, 98-106

and vacuum field correlations,
105

and zero-point energy, 100

and zero-point field, 218

Casimir—Polder theory, 104,
232

dispersion, 99

inadequacy of theories based
on pairwise additive in-
teractions, 271, 273

induction, 99

London approximation, 104,
257

macroscopic theory, 260

nonadditive, 266, 267

nonadditivity, 254-258

orientational, 99

pairwise, 267

relative magnitude of three-
body contributions, 258

retarded, 104, 105, 283

two- and three-body, 258

van der Waals interaction

retarded, 218, 249

vector potential, 38, 40, 44, 47,

50, 84,116, 118, 119, 137,
173, 182, 291, 318, 360
and canonical momentum, 117
and kinetic momentum, 319
Coulomb gauge, 382, 388
Lorentz gauge, 365
transverse
Green function, 376

vibrational spectra, 31
virial theorem, 3
virtual electron—positron pairs, 424,

458

virtual pair production, 314
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virtual photons, 85, 97, 151, 456,
458, 471
virtual transitions, 147

wave—particle dualism, 1

wave-particle dualism, 17, 41, 73

Weisskopf—~Wigner approximation,
147, 165, 422

Weisskopf-Wigner theory, 136, 144—
148

Wheeler-Feynman theory, 162, 165

Wick ordering, 43

Wick’s theorem, 448-452

Wien displacement law, 4-6, 21

Wien distribution, 5, 6, 11

work function, 313

X-ray diffraction, 29-31
Young interferometer, 497

zero-point electromagnetic field, 51
zero-point energy
and molecular vibrations, 31
and Planck spectrum, 14,8 —
17

INDEX

electromagnetic field, 128, 219,
232, 286
for spherical conducting shell,
287 \
harmonic oscillator, 66
in Einstein—Stern theory, 14—
17, 27 >
in general relativity, 295 :
in quantum field theory, 35,
331
infinite value, 56
of Dirac field, 351, 353, 354
of electromagnetic field, 32,
43, 49, 52, 56, 73, 221,
281, 473
of Klein—Gordon field, 342
of Schrodinger field, 339
of trapped particles, 212
regularized, 357
uniqueness, 60

zero-point field

in spontaneous emission, 80

zero-point spectrum

Lorentz invariance, 60, 291

zitterbewegung, 322, 323




